BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 30600425)

  • 1. Cell death in the human infant central nervous system and in sudden infant death syndrome (SIDS).
    Ambrose N; Rodriguez M; Waters KA; Machaalani R
    Apoptosis; 2019 Feb; 24(1-2):46-61. PubMed ID: 30600425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal apoptosis in the brainstem medulla of sudden unexpected death in infancy (SUDI), and the importance of standardized SUDI classification.
    Ambrose N; Waters KA; Rodriguez ML; Bailey K; Machaalani R
    Forensic Sci Med Pathol; 2018 Mar; 14(1):42-56. PubMed ID: 29460253
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neuronal cell death in the Sudden Infant Death Syndrome brainstem and associations with risk factors.
    Machaalani R; Waters KA
    Brain; 2008 Jan; 131(Pt 1):218-28. PubMed ID: 18084013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The α7 and β2 nicotinic acetylcholine receptor subunits regulate apoptosis in the infant hippocampus, and in sudden infant death syndrome (SIDS).
    Luijerink LLM; Vivekanandarajah A; Waters KA; Machaalani R
    Apoptosis; 2020 Aug; 25(7-8):574-589. PubMed ID: 32577853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active caspase-3 in the sudden infant death syndrome (SIDS) brainstem.
    Machaalani R; Rodriguez M; Waters KA
    Acta Neuropathol; 2007 May; 113(5):577-84. PubMed ID: 17364171
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cell death in the lateral geniculate nucleus, and its possible relationship with nicotinic receptors and sudden infant death syndrome (SIDS).
    Chang C; Vivekanandarajah A; Waters KA; Machaalani R
    Mol Neurobiol; 2023 Jul; 60(7):4120-4131. PubMed ID: 37041306
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The α3 and α4 nicotinic acetylcholine receptor (nAChR) subunits in the brainstem medulla of sudden infant death syndrome (SIDS).
    Aishah A; Hinton T; Waters KA; Machaalani R
    Neurobiol Dis; 2019 May; 125():23-30. PubMed ID: 30665006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microglia in the human infant brain and factors that affect expression.
    Ambrose N; Rodriguez M; Waters KA; Machaalani R
    Brain Behav Immun Health; 2020 Aug; 7():100117. PubMed ID: 34589874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Choline-acetyltransferase (ChAT) and acetylcholinesterase (AChE) in the human infant dorsal motor nucleus of the Vagus (DMNV), and alterations according to sudden infant death syndrome (SIDS) category.
    Joda M; Waters KA; Machaalani R
    Neurobiol Dis; 2023 Nov; 188():106319. PubMed ID: 37813167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Unfolded Protein Response in the Human Infant Brain and Dysregulation Seen in Sudden Infant Death Syndrome (SIDS).
    Thomson S; Waters KA; Machaalani R
    Mol Neurobiol; 2021 May; 58(5):2242-2255. PubMed ID: 33417217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuronal apoptosis in sudden infant death syndrome.
    Waters KA; Meehan B; Huang JQ; Gravel RA; Michaud J; Côté A
    Pediatr Res; 1999 Feb; 45(2):166-72. PubMed ID: 10022585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathological data on apoptosis in the brainstem and physiological data on sleep apnea in SIDS victims.
    Sawaguchi T; Patricia F; Kadhim H; Groswasser J; Sottiaux M; Nishida H; Kahn A
    Early Hum Dev; 2003 Dec; 75 Suppl():S13-20. PubMed ID: 14693387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptor 1 (PAC1) in the human infant brain and changes in the Sudden Infant Death Syndrome (SIDS).
    Huang J; Waters KA; Machaalani R
    Neurobiol Dis; 2017 Jul; 103():70-77. PubMed ID: 28392470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Serotoninergic receptor 1A in the sudden infant death syndrome brainstem medulla and associations with clinical risk factors.
    Machaalani R; Say M; Waters KA
    Acta Neuropathol; 2009 Mar; 117(3):257-65. PubMed ID: 19052756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Serotonergic brainstem abnormalities in Northern Plains Indians with the sudden infant death syndrome.
    Kinney HC; Randall LL; Sleeper LA; Willinger M; Belliveau RA; Zec N; Rava LA; Dominici L; Iyasu S; Randall B; Habbe D; Wilson H; Mandell F; McClain M; Welty TK
    J Neuropathol Exp Neurol; 2003 Nov; 62(11):1178-91. PubMed ID: 14656075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The triple risk hypotheses in sudden infant death syndrome.
    Guntheroth WG; Spiers PS
    Pediatrics; 2002 Nov; 110(5):e64. PubMed ID: 12415070
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Promotion of the Unfolding Protein Response in Orexin/Dynorphin Neurons in Sudden Infant Death Syndrome (SIDS): Elevated pPERK and ATF4 Expression.
    Hunt NJ; Waters KA; Machaalani R
    Mol Neurobiol; 2017 Nov; 54(9):7171-7185. PubMed ID: 27796753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of cigarette smoke exposure on nicotinic acetylcholine receptor subunits α7 and β2 in the sudden infant death syndrome (SIDS) brainstem.
    Machaalani R; Say M; Waters KA
    Toxicol Appl Pharmacol; 2011 Dec; 257(3):396-404. PubMed ID: 22000980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic MALDI-TOF/TOF-IMS examination of peptide expression in the formalin fixed brainstem and changes in sudden infant death syndrome infants.
    Hunt NJ; Phillips L; Waters KA; Machaalani R
    J Proteomics; 2016 Apr; 138():48-60. PubMed ID: 26926438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abnormalities in substance P neurokinin-1 receptor binding in key brainstem nuclei in sudden infant death syndrome related to prematurity and sex.
    Bright FM; Vink R; Byard RW; Duncan JR; Krous HF; Paterson DS
    PLoS One; 2017; 12(9):e0184958. PubMed ID: 28931039
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.