BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

638 related articles for article (PubMed ID: 30600552)

  • 1. Interfacial Modification in Organic and Perovskite Solar Cells.
    Bi S; Leng X; Li Y; Zheng Z; Zhang X; Zhang Y; Zhou H
    Adv Mater; 2019 Nov; 31(45):e1805708. PubMed ID: 30600552
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic and perovskite solar cells: Working principles, materials and interfaces.
    Marinova N; Valero S; Delgado JL
    J Colloid Interface Sci; 2017 Feb; 488():373-389. PubMed ID: 27871725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial and Bulk Nanostructures Control Loss of Charges in Organic Solar Cells.
    Naveed HB; Zhou K; Ma W
    Acc Chem Res; 2019 Oct; 52(10):2904-2915. PubMed ID: 31577121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In Situ Passivation on Rear Perovskite Interface for Efficient and Stable Perovskite Solar Cells.
    Wang G; Wang L; Qiu J; Yan Z; Li C; Dai C; Zhen C; Tai K; Yu W; Jiang X
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7690-7700. PubMed ID: 31961639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Interface Engineering for Planar Heterojunction Perovskite Solar Cells.
    Yin W; Pan L; Yang T; Liang Y
    Molecules; 2016 Jun; 21(7):. PubMed ID: 27347923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic Structure of Nonionic Surfactant-Modified PEDOT:PSS and Its Application in Perovskite Solar Cells with Reduced Interface Recombination.
    Shin D; Kang D; Lee JB; Ahn JH; Cho IW; Ryu MY; Cho SW; Jung NE; Lee H; Yi Y
    ACS Appl Mater Interfaces; 2019 May; 11(18):17028-17034. PubMed ID: 30990013
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Efficient Organic Solar Cells Enabled by the Incorporation of a Sulfonated Graphene Doped PEDOT:PSS Interlayer.
    Pei S; Xiong X; Zhong W; Xue X; Zhang M; Hao T; Zhang Y; Liu F; Zhu L
    ACS Appl Mater Interfaces; 2022 Aug; 14(30):34814-34821. PubMed ID: 35876251
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Defect Passivation by Amide-Based Hole-Transporting Interfacial Layer Enhanced Perovskite Grain Growth for Efficient p-i-n Perovskite Solar Cells.
    Wang SY; Chen CP; Chung CL; Hsu CW; Hsu HL; Wu TH; Zhuang JY; Chang CJ; Chen HM; Chang YJ
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):40050-40061. PubMed ID: 31596062
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfaces and Interfacial Layers in Inorganic Perovskite Solar Cells.
    Xiang W; Liu SF; Tress W
    Angew Chem Int Ed Engl; 2021 Dec; 60(51):26440-26453. PubMed ID: 34478217
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large Planar π-Conjugated Porphyrin for Interfacial Engineering in p-i-n Perovskite Solar Cells.
    Li B; Zheng C; Liu H; Zhu J; Zhang H; Gao D; Huang W
    ACS Appl Mater Interfaces; 2016 Oct; 8(41):27438-27443. PubMed ID: 27700051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Material and Interface Engineering for High-Performance Perovskite Solar Cells: A Personal Journey and Perspective.
    Qiu J; Yang S
    Chem Rec; 2020 Mar; 20(3):209-229. PubMed ID: 31368664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimensionality-Controlled Surface Passivation for Enhancing Performance and Stability of Perovskite Solar Cells via Triethylenetetramine Vapor.
    Yao D; Mao X; Wang X; Yang Y; Pham ND; Du A; Chen P; Wang L; Wilson GJ; Wang H
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):6651-6661. PubMed ID: 31918551
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Defect Passivation Scheme toward High-Performance Halide Perovskite Solar Cells.
    Du B; He K; Zhao X; Li B
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177158
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifunctional Fullerene Derivative for Interface Engineering in Perovskite Solar Cells.
    Li Y; Zhao Y; Chen Q; Yang YM; Liu Y; Hong Z; Liu Z; Hsieh YT; Meng L; Li Y; Yang Y
    J Am Chem Soc; 2015 Dec; 137(49):15540-7. PubMed ID: 26592525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fused-Ring Electron Acceptors for Photovoltaics and Beyond.
    Wang J; Zhan X
    Acc Chem Res; 2021 Jan; 54(1):132-143. PubMed ID: 33284599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives.
    Yin Z; Wei J; Zheng Q
    Adv Sci (Weinh); 2016 Aug; 3(8):1500362. PubMed ID: 27812480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interfacial modification towards highly efficient and stable perovskite solar cells.
    Wang Y; Zhang Z; Tao M; Lan Y; Li M; Tian Y; Song Y
    Nanoscale; 2020 Sep; 12(36):18563-18575. PubMed ID: 32970092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amine-Based Interfacial Engineering in Solution-Processed Organic and Perovskite Solar Cells.
    Rasool S; Khan N; Jahankhan M; Kim DH; Ho TT; Do LT; Song CE; Lee HK; Lee SK; Lee JC; So WW; Moon SJ; Shin WS
    ACS Appl Mater Interfaces; 2019 May; 11(18):16785-16794. PubMed ID: 30999747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal-Organic Framework Materials in Perovskite Solar Cells: Recent Advancements and Perspectives.
    Ye Y; Yin Y; Chen Y; Li S; Li L; Yamauchi Y
    Small; 2023 Jun; 19(25):e2208119. PubMed ID: 36932872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancing Efficiency and Stability of Perovskite Solar Cells via a Self-Assembled Dopamine Interfacial Layer.
    Hou M; Zhang H; Wang Z; Xia Y; Chen Y; Huang W
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30607-30613. PubMed ID: 30118201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.