These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 30600883)

  • 1. A Guiding Principle for Strengthening Crosslinked Polymers: Synthesis and Application of Mobility-Controlling Rotaxane Crosslinkers.
    Sawada J; Aoki D; Otsuka H; Takata T
    Angew Chem Int Ed Engl; 2019 Feb; 58(9):2765-2768. PubMed ID: 30600883
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of Vinylic Macromolecular Rotaxane Cross-Linkers Endowing Network Polymers with Toughness.
    Sawada J; Aoki D; Uchida S; Otsuka H; Takata T
    ACS Macro Lett; 2015 May; 4(5):598-601. PubMed ID: 35596280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclodextrin-Based [3]Rotaxane-Crosslinked Fluorescent Polymer: Synthesis and De-Crosslinking Using Size Complementarity.
    Akae Y; Sogawa H; Takata T
    Angew Chem Int Ed Engl; 2018 Nov; 57(45):14832-14836. PubMed ID: 30239079
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Versatile supramolecular cross-linker: a rotaxane cross-linker that directly endows vinyl polymers with movable cross-links.
    Arai T; Jang K; Koyama Y; Asai S; Takata T
    Chemistry; 2013 May; 19(19):5917-23. PubMed ID: 23495049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Macrocyclic Dinuclear Palladium Complex as a Novel Doubly Threaded [3]Rotaxane Scaffold and Its Application as a Rotaxane Cross-Linker.
    Yamamoto K; Nameki R; Sogawa H; Takata T
    Angew Chem Int Ed Engl; 2020 Oct; 59(41):18023-18028. PubMed ID: 32578285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Component Mobility on the Properties of Macromolecular [2]Rotaxanes.
    Chen Z; Aoki D; Uchida S; Marubayashi H; Nojima S; Takata T
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2778-81. PubMed ID: 26806916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crosslinked Network with Rotatable Binding Sites Based on Monocarboxylated α-Cyclodextrin [2]Rotaxane Capable of Angiotensin III Recognition.
    Ohmori KH; Ooya T; Takeuchi T
    Chemistry; 2017 Apr; 23(19):4708-4712. PubMed ID: 28185437
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A rational design for the directed helicity change of polyacetylene using dynamic rotaxane mobility by means of through-space chirality transfer.
    Ishiwari F; Fukasawa K; Sato T; Nakazono K; Koyama Y; Takata T
    Chemistry; 2011 Oct; 17(43):12067-75. PubMed ID: 21922578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rotaxane-Based Difunctional Nitrile N-Oxide Crosslinker: Synthesis and Direct Introduction of Movable Crosslinking Points into Ethylene-Propylene-Butadiene Monomer (EPDM) Rubber.
    Sogawa H; Tsutsuba T; Sakiyama N; Ikeda T; Takata T
    Macromol Rapid Commun; 2021 Apr; 42(7):e2000639. PubMed ID: 33326129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of a Structure-Definite α-Cyclodextrin-Based Macromolecular [3]Rotaxane Using a Size-Complementary Method.
    Akae Y; Sogawa H; Takata T
    Angew Chem Int Ed Engl; 2018 Sep; 57(36):11742-11746. PubMed ID: 30014551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Synthesis of Cyclic Block Copolymers by Rotaxane Protocol by Linear/Cyclic Topology Transformation.
    Valentina S; Ogawa T; Nakazono K; Aoki D; Takata T
    Chemistry; 2016 Jun; 22(26):8759-62. PubMed ID: 27037975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Star/linear polymer topology transformation facilitated by mechanical linking of polymer chains.
    Aoki D; Uchida S; Takata T
    Angew Chem Int Ed Engl; 2015 Jun; 54(23):6770-4. PubMed ID: 25892579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanically interlocked mechanophores by living-radical polymerization from rotaxane initiators.
    Stoll RS; Friedman DC; Stoddart JF
    Org Lett; 2011 May; 13(10):2706-9. PubMed ID: 21524103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of [1]rotaxane via covalent bond formation and its unique fluorescent response by energy transfer in the presence of lithium ion.
    Hiratani K; Kaneyama M; Nagawa Y; Koyama E; Kanesato M
    J Am Chem Soc; 2004 Oct; 126(42):13568-9. PubMed ID: 15493885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the Difference Between Rotaxane and Pseudorotaxane.
    Sun HL; Zhang HY; Dai Z; Han X; Liu Y
    Chem Asian J; 2017 Jan; 12(2):265-270. PubMed ID: 27897389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rotaxane dendrimers.
    Lee JW; Kim K
    Top Curr Chem; 2003; 228():111-40. PubMed ID: 21132482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and evaluation of new oxaspiro monomers for double ring-opening polymerization.
    Stansbury JW
    J Dent Res; 1992 Jul; 71(7):1408-12. PubMed ID: 1629456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular puzzle ring: pseudo[1]rotaxane from a flexible cyclodextrin derivative.
    Miyawaki A; Kuad P; Takashima Y; Yamaguchi H; Harada A
    J Am Chem Soc; 2008 Dec; 130(50):17062-9. PubMed ID: 19053429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining the intracellular transport mechanism of a cleft-[2]rotaxane.
    Bao X; Isaacsohn I; Drew AF; Smithrud DB
    J Am Chem Soc; 2006 Sep; 128(37):12229-38. PubMed ID: 16967974
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid scorpionate/cyclopentadienyl magnesium and zinc complexes: synthesis, coordination chemistry, and ring-opening polymerization studies on cyclic esters.
    Garcés A; Sánchez-Barba LF; Alonso-Moreno C; Fajardo M; Fernández-Baeza J; Otero A; Lara-Sánchez A; López-Solera I; Rodríguez AM
    Inorg Chem; 2010 Mar; 49(6):2859-71. PubMed ID: 20146427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.