These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 30600927)

  • 1. Au-Ag Nanoflower Catalysts with Clean Surfaces for Alcohol Oxidation.
    Imura Y; Akiyama R; Furukawa S; Kan R; Morita-Imura C; Komatsu T; Kawai T
    Chem Asian J; 2019 Feb; 14(4):547-552. PubMed ID: 30600927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoarchitectonics and Catalytic Performance of Au-Pd Nanoflowers Supported on Fe
    Imura Y; Tanaka M; Kasuga A; Akiyama R; Ogawa D; Sugimori H; Morita-Imura C; Kawai T
    J Oleo Sci; 2023; 72(11):1055-1061. PubMed ID: 37914267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic Fe
    Imura Y; Kan R; Akiyama R; Saito H; Morita-Imura C; Kawai T
    ACS Omega; 2020 Jun; 5(25):15755-15760. PubMed ID: 32637851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparing Alumina-Supported Gold Nanowires for Alcohol Oxidation.
    Imura Y; Maniwa M; Iida K; Saito H; Morita-Imura C; Kawai T
    ACS Omega; 2021 Jun; 6(24):16043-16048. PubMed ID: 34179649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel formation of Ag/Au bimetallic nanoparticles by physical mixture of monometallic nanoparticles in dispersions and their application to catalysts for aerobic glucose oxidation.
    Zhang H; Haba M; Okumura M; Akita T; Hashimoto S; Toshima N
    Langmuir; 2013 Aug; 29(33):10330-9. PubMed ID: 23829515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bimetallic Ag-Au nanowires: synthesis, growth mechanism, and catalytic properties.
    Fu H; Yang X; Jiang X; Yu A
    Langmuir; 2013 Jun; 29(23):7134-42. PubMed ID: 23679079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of PdAg Hollow Nanoflowers through Galvanic Replacement and Their Application for Ethanol Electrooxidation.
    Bin D; Yang B; Zhang K; Wang C; Wang J; Zhong J; Feng Y; Guo J; Du Y
    Chemistry; 2016 Nov; 22(46):16642-16647. PubMed ID: 27723142
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyamidoamine dendrimers-assisted electrodeposition of gold-platinum bimetallic nanoflowers.
    Qian L; Yang X
    J Phys Chem B; 2006 Aug; 110(33):16672-8. PubMed ID: 16913805
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sonochemically synthesized mono and bimetallic Au-Ag reduced graphene oxide based nanocomposites with enhanced catalytic activity.
    Neppolian B; Wang C; Ashokkumar M
    Ultrason Sonochem; 2014 Nov; 21(6):1948-53. PubMed ID: 24582660
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bimetallic Gold-Silver Nanoparticles Supported on Zeolitic Imidazolate Framework-8 as Highly Active Heterogenous Catalysts for Selective Oxidation of Benzyl Alcohol into Benzaldehyde.
    Liu L; Zhou X; Yan Y; Zhou J; Zhang W; Tai X
    Polymers (Basel); 2018 Oct; 10(10):. PubMed ID: 30961014
    [TBL] [Abstract][Full Text] [Related]  

  • 11. One-pot synthesis of Ag-Au bimetallic nanoparticles with Au shell and their high catalytic activity for aerobic glucose oxidation.
    Zhang H; Okuni J; Toshima N
    J Colloid Interface Sci; 2011 Feb; 354(1):131-8. PubMed ID: 21067768
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enriching Silver Nanocrystals with a Second Noble Metal.
    Wu Y; Sun X; Yang Y; Li J; Zhang Y; Qin D
    Acc Chem Res; 2017 Jul; 50(7):1774-1784. PubMed ID: 28678472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of Au-Pd Bimetallic Nanoflowers for Catalytic Reduction of 4-Nitrophenol.
    Ma T; Liang F; Chen R; Liu S; Zhang H
    Nanomaterials (Basel); 2017 Aug; 7(9):. PubMed ID: 28846598
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid Au-CdSe and Ag-CdSe nanoflowers and core-shell nanocrystals via one-pot heterogeneous nucleation and growth.
    AbouZeid KM; Mohamed MB; El-Shall MS
    Small; 2011 Dec; 7(23):3299-307. PubMed ID: 21994186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.
    Haldar KK; Kundu S; Patra A
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21946-53. PubMed ID: 25456348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seeding a New Kind of Garden: Synthesis of Architecturally Defined Multimetallic Nanostructures by Seed-Mediated Co-Reduction.
    Weiner RG; Kunz MR; Skrabalak SE
    Acc Chem Res; 2015 Oct; 48(10):2688-95. PubMed ID: 26339803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetically controlled overgrowth of Ag or Au on Pd nanocrystal seeds: from hybrid dimers to nonconcentric and concentric bimetallic nanocrystals.
    Zhu C; Zeng J; Tao J; Johnson MC; Schmidt-Krey I; Blubaugh L; Zhu Y; Gu Z; Xia Y
    J Am Chem Soc; 2012 Sep; 134(38):15822-31. PubMed ID: 22947077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shape-controlled synthesis of Au-Pd bimetallic nanocrystals for catalytic applications.
    Zhang L; Xie Z; Gong J
    Chem Soc Rev; 2016 Jul; 45(14):3916-34. PubMed ID: 27095006
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation of bimetallic nanoparticles using a facile green synthesis method and their application.
    Xia B; He F; Li L
    Langmuir; 2013 Apr; 29(15):4901-7. PubMed ID: 23517530
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly Stable Silica-Coated Gold Nanoflowers Supported on Alumina.
    Imura Y; Koizumi S; Akiyama R; Morita-Imura C; Kawai T
    Langmuir; 2017 May; 33(17):4313-4318. PubMed ID: 28402668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.