These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 30601008)

  • 1. Relations between the Structural α-Relaxation and the Johari-Goldstein β-Relaxation in Two Monohydroxyl Alcohols: 1-Propanol and 5-Methyl-2-hexanol.
    Ngai KL; Wang LM
    J Phys Chem B; 2019 Jan; 123(3):714-719. PubMed ID: 30601008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The JG β-relaxation in water and impact on the dynamics of aqueous mixtures and hydrated biomolecules.
    Capaccioli S; Ngai KL; Ancherbak S; Bertoldo M; Ciampalini G; Thayyil MS; Wang LM
    J Chem Phys; 2019 Jul; 151(3):034504. PubMed ID: 31325935
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscopic understanding of the Johari-Goldstein β relaxation gained from nuclear γ-resonance time-domain-interferometry experiments.
    Ngai KL
    Phys Rev E; 2021 Jul; 104(1-2):015103. PubMed ID: 34412284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classification of secondary relaxation in glass-formers based on dynamic properties.
    Ngai KL; Paluch M
    J Chem Phys; 2004 Jan; 120(2):857-73. PubMed ID: 15267922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correlation between primary and secondary Johari-Goldstein relaxations in supercooled liquids: invariance to changes in thermodynamic conditions.
    Mierzwa M; Pawlus S; Paluch M; Kaminska E; Ngai KL
    J Chem Phys; 2008 Jan; 128(4):044512. PubMed ID: 18247974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpreting the nonlinear dielectric response of glass-formers in terms of the coupling model.
    Ngai KL
    J Chem Phys; 2015 Mar; 142(11):114502. PubMed ID: 25796256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Isochronal superpositioning of the caged dynamics, the α, and the Johari-Goldstein β relaxations in metallic glasses.
    Ren NN; Guan PF; Ngai KL
    J Chem Phys; 2021 Dec; 155(24):244502. PubMed ID: 34972387
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Why is the change of the Johari-Goldstein β-relaxation time by densification in ultrastable glass minor?
    Ngai KL; Paluch M; Rodríguez-Tinoco C
    Phys Chem Chem Phys; 2018 Nov; 20(43):27342-27349. PubMed ID: 30375597
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling of Caged Molecule Dynamics to JG β-Relaxation II: Polymers.
    Ngai KL; Capaccioli S; Prevosto D; Wang LM
    J Phys Chem B; 2015 Sep; 119(38):12502-18. PubMed ID: 26317769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isochronal Superposition of the Structural α-Relaxation and Invariance of Its Relation to the β-Relaxation to Changes of Thermodynamic Conditions in Methyl
    Jin X; Guo Y; Feng S; Capaccioli S; Ngai KL; Wang LM
    J Phys Chem B; 2020 Jul; 124(30):6690-6697. PubMed ID: 32633964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interdependence of primary and Johari-Goldstein secondary relaxations in glass-forming systems.
    Kessairi K; Capaccioli S; Prevosto D; Lucchesi M; Sharifi S; Rolla PA
    J Phys Chem B; 2008 Apr; 112(15):4470-3. PubMed ID: 18366219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary and secondary relaxations in supercooled eugenol and isoeugenol at ambient and elevated pressures: dependence on chemical microstructure.
    Kaminska E; Kaminski K; Paluch M; Ngai KL
    J Chem Phys; 2006 Apr; 124(16):164511. PubMed ID: 16674150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in dynamics of the glass-forming pharmaceutical nifedipine in binary mixtures with octaacetylmaltose.
    Kaminska E; Tarnacka M; Kaminski K; Ngai KL; Paluch M
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):185-91. PubMed ID: 26428937
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relation between the alpha-relaxation and Johari-Goldstein beta-relaxation of a component in binary miscible mixtures of glass-formers.
    Capaccioli S; Ngai KL
    J Phys Chem B; 2005 May; 109(19):9727-35. PubMed ID: 16852172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accounts of the changes in dynamics of hydrogen-bonded materials by pressure, nanoconfinement, and hyperquenching.
    Ngai KL
    Phys Rev E; 2020 Sep; 102(3-1):032606. PubMed ID: 33075981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary relaxation dynamics in rigid glass-forming molecular liquids with related structures.
    Li X; Wang M; Liu R; Ngai KL; Tian Y; Wang LM; Capaccioli S
    J Chem Phys; 2015 Sep; 143(10):104505. PubMed ID: 26374048
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Different Molecular Architectures Influence the Dynamics of H-Bonded Structures in Glass-Forming Monohydroxy Alcohols.
    Wikarek M; Pawlus S; Tripathy SN; Szulc A; Paluch M
    J Phys Chem B; 2016 Jun; 120(25):5744-52. PubMed ID: 27254726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new secondary relaxation in the rigid and planar 1-methylindole: Evidence from binary mixture studies.
    Wang M; Li X; Guo Y; Wu T; Liu YD; Ngai KL; Wang LM
    J Chem Phys; 2016 Dec; 145(21):214501. PubMed ID: 28799385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primary and secondary relaxations in bis-5-hydroxypentylphthalate revisited.
    Ngai KL; Kamińska E; Sekuła M; Paluch M
    J Chem Phys; 2005 Nov; 123(20):204507. PubMed ID: 16351281
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling of Caged Molecule Dynamics to JG β-Relaxation: I.
    Capaccioli S; Ngai KL; Thayyil MS; Prevosto D
    J Phys Chem B; 2015 Jul; 119(28):8800-8. PubMed ID: 26090692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.