These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 3060120)

  • 21. [Transketolase: structure and mechanism of action].
    Kochetov GA
    Biokhimiia; 1986 Dec; 51(12):2010-29. PubMed ID: 3542062
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and functional differentiation of three groups of tyrosine residues by acetylation of N-acetylimidazole in manganese stabilizing protein.
    Zhang F; Gao J; Weng J; Tan C; Ruan K; Xu C; Jiang D
    Biochemistry; 2005 Jan; 44(2):719-25. PubMed ID: 15641798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of catalytically important residues in yeast transketolase.
    Wikner C; Nilsson U; Meshalkina L; Udekwu C; Lindqvist Y; Schneider G
    Biochemistry; 1997 Dec; 36(50):15643-9. PubMed ID: 9398292
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Localization of reactive tyrosine residues of baker's yeast transketolase.
    Kovina M; Viryasov M; Baratova L; Kochetov G
    FEBS Lett; 1996 Sep; 392(3):293-4. PubMed ID: 8774865
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Reversible dissociation of transketolase from baker's yeast].
    Cherniak VIa; Beliaeva RKh; Magretova NN; Kochetov GA
    Biokhimiia; 1977 Jan; 42(1):159-61. PubMed ID: 322732
    [No Abstract]   [Full Text] [Related]  

  • 26. Saccharomyces cerevisiae Yak1p protein kinase autophosphorylates on tyrosine residues and phosphorylates myelin basic protein on a C-terminal serine residue.
    Kassis S; Melhuish T; Annan RS; Chen SL; Lee JC; Livi GP; Creasy CL
    Biochem J; 2000 Jun; 348 Pt 2(Pt 2):263-72. PubMed ID: 10816418
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Half-of-the-sites reactivity of transketolase from Saccharomyces cerevisiae.
    Sevostyanova I; Solovjeva O; Selivanov V; Kochetov G
    Biochem Biophys Res Commun; 2009 Feb; 379(4):851-4. PubMed ID: 19121289
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Histochemical modification of the active site of succinate dehydrogenase with N-acetylimidazole.
    Nakae Y; Shono M
    Histochem J; 1986 Apr; 18(4):169-74. PubMed ID: 3733466
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Amino acid makeup of the transketolase of baker's yeasts].
    Kochetov GA; Kobylianskaia KR; Belianova LP
    Biokhimiia; 1973; 38(6):1303-4. PubMed ID: 4600962
    [No Abstract]   [Full Text] [Related]  

  • 30. Reactivity at the substrate activation site of yeast pyruvate decarboxylase: inhibition by distortion of domain interactions.
    Baburina I; Dikdan G; Guo F; Tous GI; Root B; Jordan F
    Biochemistry; 1998 Feb; 37(5):1245-55. PubMed ID: 9477950
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Chromatographic study of transketolase preparations from baker's yeast].
    Kochetov GA; Chernov NN
    Biokhimiia; 1971; 36(6):1168-74. PubMed ID: 4945849
    [No Abstract]   [Full Text] [Related]  

  • 32. Active subunits of transketolase from baker's yeast.
    Kochetov GA; Solovieva ON
    Biochem Biophys Res Commun; 1978 Sep; 84(2):515-9. PubMed ID: 363130
    [No Abstract]   [Full Text] [Related]  

  • 33. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies.
    Wang H; Vath GM; Gleason KJ; Hanna PE; Wagner CR
    Biochemistry; 2004 Jun; 43(25):8234-46. PubMed ID: 15209520
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acetylation of bovine growth hormone by N-acetylimidazole.
    Blumgrund de Satz V; Santomé JA
    Int J Pept Protein Res; 1981 Nov; 18(5):492-9. PubMed ID: 7341531
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The role of cysteine 160 in thiamine diphosphate binding of the Calvin-Benson-Bassham cycle transketolase of Rhodobacter sphaeroides.
    Bobst CE; Tabita FR
    Arch Biochem Biophys; 2004 Jun; 426(1):43-54. PubMed ID: 15130781
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Refined structure of transketolase from Saccharomyces cerevisiae at 2.0 A resolution.
    Nikkola M; Lindqvist Y; Schneider G
    J Mol Biol; 1994 May; 238(3):387-404. PubMed ID: 8176731
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Inhibition of transketolase by p-hydroxyphenylpyruvate.
    Solovjeva ON; Kochetov GA
    FEBS Lett; 1999 Dec; 462(3):246-8. PubMed ID: 10622704
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Kinetic mechanism of active site non-equivalence in transketolase.
    Kovina MV; Selivanov VA; Kochevova NV; Kochetov GA
    FEBS Lett; 1997 Nov; 418(1-2):11-4. PubMed ID: 9414084
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The number of coenzyme binding sites in transketolase from Baker's yeast.
    Heinrich CP
    Experientia; 1973 Oct; 29(10):1227-8. PubMed ID: 4586176
    [No Abstract]   [Full Text] [Related]  

  • 40. Homology modeling of human transketolase: description of critical sites useful for drug design and study of the cofactor binding mode.
    Obiol-Pardo C; Rubio-Martinez J
    J Mol Graph Model; 2009 Feb; 27(6):723-34. PubMed ID: 19111488
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.