These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 3060120)

  • 41. [Cooperative mechanism of phosphorylation of the monomeric and dimeric forms of inorganic pyrophosphatase from baker's yeast].
    Bakulevá NP; Kasho VN; Baĭkov AA; Nazarova TI; Avaeva SM
    Biokhimiia; 1982 Jul; 47(7):1084-90. PubMed ID: 6126224
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Inhibition of ribulose 1,5-bisphosphate carboxylase by N-acetylimidazole.
    Purohit US; Bhagwat AS
    Indian J Biochem Biophys; 1988 Aug; 25(4):313-8. PubMed ID: 3240927
    [No Abstract]   [Full Text] [Related]  

  • 43. Which stage of the process of apotransketolase interaction with thiamine diphosphate is affected by the regulatory activity of the donor substrate?
    Esakova OA; Meshalkina LE; Golbik R; Brauer J; Hübner G; Kochetov GA
    IUBMB Life; 2007 Feb; 59(2):104-9. PubMed ID: 17454302
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The N-terminal amino acid sequence of yeast transketolase.
    Nixon PF; Duggleby RG
    Protein Seq Data Anal; 1991 Dec; 4(6):325-6. PubMed ID: 1812485
    [No Abstract]   [Full Text] [Related]  

  • 45. The inactivation of Clostridium perfringens epsilon toxin by treatment with tetranitromethane and N-acetylimidazole.
    Sakurai J; Nagahama M
    Toxicon; 1987; 25(3):279-84. PubMed ID: 2884756
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinetics of the reaction of baker's yeast glucose-6-phosphate dehydrogenase with 5,5'-dithiobis(2-nitrobenzoic acid).
    Adediran SA; Gbadegesin MR
    Arch Biochem Biophys; 1995 Sep; 322(1):39-42. PubMed ID: 7574692
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Characterization of recombinant Saccharomyces cerevisiae manganese-containing superoxide dismutase and its H30A and K170R mutants expressed in Escherichia coli.
    Borders CL; Bjerrum MJ; Schirmer MA; Oliver SG
    Biochemistry; 1998 Aug; 37(32):11323-31. PubMed ID: 9698380
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The functional identity of the active centres of transketolase.
    Meshalkina LE; Kochetov GA
    Biochim Biophys Acta; 1979 Dec; 571(2):218-23. PubMed ID: 389288
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Effect of bivalent cations on the interaction of transketolase with its donor substrate.
    Sevostyanova IA; Yurshev VA; Solovjeva ON; Zabrodskaya SV; Kochetov GA
    Proteins; 2008 May; 71(2):541-5. PubMed ID: 18186462
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Enzymes of pentose biosynthesis. The quaternary structure and reacting form of transketolase from baker's yeast.
    Cavaliere SW; Neet KE; Sable HZ
    Arch Biochem Biophys; 1975 Dec; 171(2):527-32. PubMed ID: 1106327
    [No Abstract]   [Full Text] [Related]  

  • 51. Chemical modification of tryptophan at the binding site of thiamine-pyrophosphate in transketolase from Baker's yeast.
    Heinrich CP; Noack K; Wiss O
    Biochem Biophys Res Commun; 1972 Dec; 49(6):1427-32. PubMed ID: 4565375
    [No Abstract]   [Full Text] [Related]  

  • 52. Halogenated pyruvate derivatives as substrates of transketolase from Saccharomyces cerevisiae.
    Esakova OA; Meshalkina LE; Kochetov GA; Golbik R
    Biochemistry (Mosc); 2009 Nov; 74(11):1234-8. PubMed ID: 19916939
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Bromopyruvate as an affinity label for baker's yeast flavocytochrome b2. Kinetic study of the inactivation reaction.
    Mulet C; Lederer F
    Eur J Biochem; 1977 Mar; 73(2):443-7. PubMed ID: 321222
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Energetic and spectroscopic studies on the interaction between thiamine diphosphate and apotransketolase.
    Heinrich CP; Schmidt D; Noack K
    Eur J Biochem; 1974 Feb; 41(3):555-61. PubMed ID: 4593967
    [No Abstract]   [Full Text] [Related]  

  • 55. [Study of different conformational states of transketolase by the method of perturbation UV-spectrophotometry].
    Usmanov RA; Kochetov GA
    Biokhimiia; 1978 Oct; 43(10):1796-1804. PubMed ID: 719050
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Three-dimensional structure of apotransketolase. Flexible loops at the active site enable cofactor binding.
    Sundström M; Lindqvist Y; Schneider G
    FEBS Lett; 1992 Nov; 313(3):229-31. PubMed ID: 1446740
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The domain structure of transketolase from baker's yeast.
    Tikhomirova NK; Tsuprun VL; Kochetov GA
    FEBS Lett; 1991 May; 283(1):68-9. PubMed ID: 2037076
    [No Abstract]   [Full Text] [Related]  

  • 58. The change of stability and activity of thermolysin by acetylation with N-acetylimidazole.
    Ota Y; Nakamura H; Samejima T
    J Biochem; 1972 Sep; 72(3):521-7. PubMed ID: 4634971
    [No Abstract]   [Full Text] [Related]  

  • 59. Thiaminepyrophosphate induced changes in the optical activity of baker's yeast transketolase.
    Kochetov GA; Usmanov RA; Merzlov VP
    FEBS Lett; 1970 Aug; 9(5):265-266. PubMed ID: 11947687
    [No Abstract]   [Full Text] [Related]  

  • 60. Subunit size of transketolase from baker's yeast.
    Heinrich CP; Wiss O
    FEBS Lett; 1971 May; 14(4):251-253. PubMed ID: 11945770
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.