These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 30601502)

  • 21. Recent Progress in the Surface Modification of Photoelectrodes toward Efficient and Stable Overall Water Splitting.
    Kaneko H; Minegishi T; Domen K
    Chemistry; 2018 Apr; 24(22):5697-5706. PubMed ID: 29057534
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Recent Advances in Earth-Abundant Photocathodes for Photoelectrochemical Water Splitting.
    Yang W; Moon J
    ChemSusChem; 2019 May; 12(9):1889-1899. PubMed ID: 30102017
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting.
    Kim JH; Jang JW; Jo YH; Abdi FF; Lee YH; van de Krol R; Lee JS
    Nat Commun; 2016 Dec; 7():13380. PubMed ID: 27966548
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Metal-Nitride Nanowire Dual-Photoelectrode Device for Unassisted Solar-to-Hydrogen Conversion under Parallel Illumination.
    AlOtaibi B; Fan S; Vanka S; Kibria MG; Mi Z
    Nano Lett; 2015 Oct; 15(10):6821-8. PubMed ID: 26360182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems.
    Chen X; Zhang Z; Chi L; Nair AK; Shangguan W; Jiang Z
    Nanomicro Lett; 2016; 8(1):1-12. PubMed ID: 30464988
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gold-Sensitized Silicon/ZnO Core/Shell Nanowire Array for Solar Water Splitting.
    Zhang FQ; Hu Y; Sun RN; Fu H; Peng KQ
    Front Chem; 2019; 7():206. PubMed ID: 31001523
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Perovskite-Hematite Tandem Cells for Efficient Overall Solar Driven Water Splitting.
    Gurudayal ; Sabba D; Kumar MH; Wong LH; Barber J; Grätzel M; Mathews N
    Nano Lett; 2015 Jun; 15(6):3833-9. PubMed ID: 25942281
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solar water splitting: progress using hematite (α-Fe(2) O(3) ) photoelectrodes.
    Sivula K; Le Formal F; Grätzel M
    ChemSusChem; 2011 Apr; 4(4):432-49. PubMed ID: 21416621
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nano-architecture and material designs for water splitting photoelectrodes.
    Chen HM; Chen CK; Liu RS; Zhang L; Zhang J; Wilkinson DP
    Chem Soc Rev; 2012 Sep; 41(17):5654-71. PubMed ID: 22763382
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transition-Metal-Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review.
    Li D; Shi J; Li C
    Small; 2018 Jun; 14(23):e1704179. PubMed ID: 29575653
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced Photoelectrochemical Water Oxidation from CdTe Photoanodes Annealed with CdCl
    Su J; Hisatomi T; Minegishi T; Domen K
    Angew Chem Int Ed Engl; 2020 Aug; 59(33):13800-13806. PubMed ID: 32394584
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Integrating Semiconducting Catalyst of ReS
    Zhao H; Dai Z; Xu X; Pan J; Hu J
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23074-23080. PubMed ID: 29932637
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Transparent, High-Performance, and Stable Sb
    Wang L; Lian W; Liu B; Lv H; Zhang Y; Wu X; Wang T; Gong J; Chen T; Xu H
    Adv Mater; 2022 Jul; 34(29):e2200723. PubMed ID: 35580906
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhancing the Performance of Si-Based Photocathodes for Solar Hydrogen Production in Alkaline Solution by Facilely Intercalating a Sandwich N-Doped Carbon Nanolayer to the Interface of Si and TiO
    Sun X; Jiang J; Yang Y; Shan Y; Gong L; Wang M
    ACS Appl Mater Interfaces; 2019 May; 11(21):19132-19140. PubMed ID: 31062963
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Carbon-Based Photocathode Materials for Solar Hydrogen Production.
    Bellani S; Antognazza MR; Bonaccorso F
    Adv Mater; 2019 Mar; 31(9):e1801446. PubMed ID: 30221413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overall Photoelectrochemical Water Splitting using Tandem Cell under Simulated Sunlight.
    Kim JH; Kaneko H; Minegishi T; Kubota J; Domen K; Lee JS
    ChemSusChem; 2016 Jan; 9(1):61-6. PubMed ID: 26668101
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanocarbon-Enhanced 2D Photoelectrodes: A New Paradigm in Photoelectrochemical Water Splitting.
    Ke J; He F; Wu H; Lyu S; Liu J; Yang B; Li Z; Zhang Q; Chen J; Lei L; Hou Y; Ostrikov K
    Nanomicro Lett; 2020 Nov; 13(1):24. PubMed ID: 34138209
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Progress on ternary oxide-based photoanodes for use in photoelectrochemical cells for solar water splitting.
    Lee DK; Lee D; Lumley MA; Choi KS
    Chem Soc Rev; 2019 Apr; 48(7):2126-2157. PubMed ID: 30499570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Solar Water Splitting Utilizing a SiC Photocathode, a BiVO
    Iwase A; Kudo A; Numata Y; Ikegami M; Miyasaka T; Ichikawa N; Kato M; Hashimoto H; Inoue H; Ishitani O; Tamiaki H
    ChemSusChem; 2017 Nov; 10(22):4420-4423. PubMed ID: 28960942
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strategies for stable water splitting via protected photoelectrodes.
    Bae D; Seger B; Vesborg PC; Hansen O; Chorkendorff I
    Chem Soc Rev; 2017 Apr; 46(7):1933-1954. PubMed ID: 28246670
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.