These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 30601531)

  • 1. Investigation on the structure and thermoelectric properties of Cu
    Mukherjee S; Chetty R; Madduri PVP; Nayak AK; Wojciechowski K; Ghosh T; Chattopadhyay K; Suwas S; Mallik RC
    Dalton Trans; 2019 Jan; 48(3):1040-1050. PubMed ID: 30601531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoelectric Properties and Electronic Structures of CuTi
    Hashikuni K; Suekuni K; Usui H; Chetty R; Ohta M; Kuroki K; Takabatake T; Watanabe K; Ohtaki M
    Inorg Chem; 2019 Jan; 58(2):1425-1432. PubMed ID: 30620579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic effect of band convergence and carrier transport on enhancing the thermoelectric performance of Ga doped Cu
    Sarkar S; Sarswat PK; Saini S; Mele P; Free ML
    Sci Rep; 2019 Jun; 9(1):8180. PubMed ID: 31160607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Facile fabrication of one-dimensional Te/Cu
    Park D; Ju H; Oh T; Kim J
    Sci Rep; 2018 Dec; 8(1):18082. PubMed ID: 30584252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Achieving Ultralow Lattice Thermal Conductivity and High Thermoelectric Performance in GeTe Alloys via Introducing Cu
    Zhang Q; Ti Z; Zhu Y; Zhang Y; Cao Y; Li S; Wang M; Li D; Zou B; Hou Y; Wang P; Tang G
    ACS Nano; 2021 Dec; 15(12):19345-19356. PubMed ID: 34734696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boosting High Thermoelectric Performance of Ni-Doped Cu
    Shen F; Zheng Y; Miao L; Liu C; Gao J; Wang X; Liu P; Yoshida K; Cai H
    ACS Appl Mater Interfaces; 2020 Feb; 12(7):8385-8391. PubMed ID: 31909970
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing Thermoelectric Properties of (Cu
    Zhang W; Zhou Z; Yang Y; Zheng Y; Xu Y; Zou M; Nan CW; Lin YH
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329548
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational Design of Cu Vacancies and Antisite Defects for Boosting the Thermoelectric Properties of CuGaTe
    Tang Y; Liu K; Liao L; Wu J; Su X; Zhang Q; Poudeu PFP; Tang X
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 39024645
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Manipulating Localized Vibrations of Interstitial Te for Ultra-High Thermoelectric Efficiency in p-Type Cu-In-Te Systems.
    Ren T; Han Z; Ying P; Li X; Li X; Lin X; Sarker D; Cui J
    ACS Appl Mater Interfaces; 2019 Sep; 11(35):32192-32199. PubMed ID: 31442031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aguilarite Ag
    Wang T; Zhao K; Qiu P; Song Q; Chen L; Shi X
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12632-12638. PubMed ID: 30908005
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Cation Vacancies in Cu
    Cheng X; Li Z; You Y; Zhu T; Yan Y; Su X; Tang X
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24212-24220. PubMed ID: 31251571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of structure phase transition on the thermoelectric properties of Cu
    Mac TK; Ta TT; Nguyen HT; Nguyen VD; Pham TLH; Duong VT; Thanh TD; Phan BT; Duong AT
    RSC Adv; 2022 Sep; 12(40):26383-26389. PubMed ID: 36275085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic and thermoelectric properties of Zn and Se double substituted tetrahedrite.
    Tippireddy S; Chetty R; Raut KK; Naik MH; Mukharjee PK; Jain M; Nath R; Wojciechowski K; Mallik RC
    Phys Chem Chem Phys; 2018 Nov; 20(45):28667-28677. PubMed ID: 30406779
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comment on "Investigation on the structure and thermoelectric properties of Cu
    Barajas-Aguilar AH; Garay-Tapia AM; Jiménez-Sandoval SJ
    Dalton Trans; 2020 May; 49(17):5736-5737. PubMed ID: 32313902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermoelectric Performance of Surface-Engineered Cu
    Xing C; Zhang Y; Xiao K; Han X; Liu Y; Nan B; Ramon MG; Lim KH; Li J; Arbiol J; Poudel B; Nozariasbmarz A; Li W; Ibáñez M; Cabot A
    ACS Nano; 2023 May; 17(9):8442-8452. PubMed ID: 37071412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultralow Thermal Conductivity in Diamondoid Structures and High Thermoelectric Performance in (Cu
    Xie H; Hao S; Bailey TP; Cai S; Zhang Y; Slade TJ; Snyder GJ; Dravid VP; Uher C; Wolverton C; Kanatzidis MG
    J Am Chem Soc; 2021 Apr; 143(15):5978-5989. PubMed ID: 33847500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Characterization and Thermoelectric Properties of Br-Doped AgSn
    Delgado D; Moris S; Valencia-Gálvez P; López ML; Álvarez-Serrano I; Blake GR; Galdámez A
    Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37569918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoelectric Properties of Highly-Crystallized Ge-Te-Se Glasses Doped with Cu/Bi.
    Srinivasan B; Boussard-Pledel C; Dorcet V; Samanta M; Biswas K; Lefèvre R; Gascoin F; Cheviré F; Tricot S; Reece M; Bureau B
    Materials (Basel); 2017 Mar; 10(4):. PubMed ID: 28772687
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High Thermoelectric Figure of Merit Achieved in Cu
    Yao Y; Zhang BP; Pei J; Sun Q; Nie G; Zhang WZ; Zhuo ZT; Zhou W
    ACS Appl Mater Interfaces; 2018 Sep; 10(38):32201-32211. PubMed ID: 30178653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Control of phonon transport by the formation of the Al
    Park NW; Ahn JY; Park TH; Lee JH; Lee WY; Cho K; Yoon YG; Choi CJ; Park JS; Lee SK
    Nanoscale; 2017 Jun; 9(21):7027-7036. PubMed ID: 28368061
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.