These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 30601677)

  • 1. Intrinsic catalytic activity of rhodium nanoparticles with respect to reactive oxygen species scavenging: implication for diminishing cytotoxicity.
    Cao GJ; Chen Y; Chen X; Weng P; Lin RG
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2019; 37(1):14-25. PubMed ID: 30601677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the activities of ruthenium nanomaterials as reactive oxygen species scavengers.
    Cao GJ; Jiang X; Zhang H; Zheng J; Croley TR; Yin JJ
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2017 Oct; 35(4):223-238. PubMed ID: 29115913
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pH dependent catalytic activities of platinum nanoparticles with respect to the decomposition of hydrogen peroxide and scavenging of superoxide and singlet oxygen.
    Liu Y; Wu H; Li M; Yin JJ; Nie Z
    Nanoscale; 2014 Oct; 6(20):11904-10. PubMed ID: 25175625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring environment-dependent effects of Pd nanostructures on reactive oxygen species (ROS) using electron spin resonance (ESR) technique: implications for biomedical applications.
    Wen T; He W; Chong Y; Liu Y; Yin JJ; Wu X
    Phys Chem Chem Phys; 2015 Oct; 17(38):24937-43. PubMed ID: 26344402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. TEMPO-Conjugated Gold Nanoparticles for Reactive Oxygen Species Scavenging and Regulation of Stem Cell Differentiation.
    Li J; Zhang J; Chen Y; Kawazoe N; Chen G
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35683-35692. PubMed ID: 28944661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 2,3-diarylxanthones as strong scavengers of reactive oxygen and nitrogen species: a structure-activity relationship study.
    Santos CM; Freitas M; Ribeiro D; Gomes A; Silva AM; Cavaleiro JA; Fernandes E
    Bioorg Med Chem; 2010 Sep; 18(18):6776-84. PubMed ID: 20709556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glycine-functionalized copper(ii) hydroxide nanoparticles with high intrinsic superoxide dismutase activity.
    Korschelt K; Ragg R; Metzger CS; Kluenker M; Oster M; Barton B; Panthöfer M; Strand D; Kolb U; Mondeshki M; Strand S; Brieger J; Nawaz Tahir M; Tremel W
    Nanoscale; 2017 Mar; 9(11):3952-3960. PubMed ID: 28265620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dose-dependent genotoxicity of copper oxide nanoparticles stimulated by reactive oxygen species in human lung epithelial cells.
    Akhtar MJ; Kumar S; Alhadlaq HA; Alrokayan SA; Abu-Salah KM; Ahamed M
    Toxicol Ind Health; 2016 May; 32(5):809-21. PubMed ID: 24311626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrinsic catalytic activity of Au nanoparticles with respect to hydrogen peroxide decomposition and superoxide scavenging.
    He W; Zhou YT; Wamer WG; Hu X; Wu X; Zheng Z; Boudreau MD; Yin JJ
    Biomaterials; 2013 Jan; 34(3):765-73. PubMed ID: 23103160
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prussian blue analogue nanoenzymes mitigate oxidative stress and boost bio-fermentation.
    Zhou R; Wang P; Guo Y; Dai X; Xiao S; Fang Z; Speight R; Thompson EW; Cullen PJ; Ostrikov KK
    Nanoscale; 2019 Nov; 11(41):19497-19505. PubMed ID: 31553036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorosurfactant-capped gold nanoparticles-enhanced chemiluminescence from hydrogen peroxide-hydroxide and hydrogen peroxide-bicarbonate in presence of cobalt(II).
    Li J; Li Q; Lu C; Zhao L; Lin JM
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Feb; 78(2):700-5. PubMed ID: 21186138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic analysis of superoxide anion radical-scavenging and hydroxyl radical-scavenging activities of platinum nanoparticles.
    Hamasaki T; Kashiwagi T; Imada T; Nakamichi N; Aramaki S; Toh K; Morisawa S; Shimakoshi H; Hisaeda Y; Shirahata S
    Langmuir; 2008 Jul; 24(14):7354-64. PubMed ID: 18553993
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-Enzyme Characteristics of Polyvinylpyrrolidone-Capped Iridium Nanoparticles and Their Cellular Protective Effect against H2O2-Induced Oxidative Damage.
    Su H; Liu DD; Zhao M; Hu WL; Xue SS; Cao Q; Le XY; Ji LN; Mao ZW
    ACS Appl Mater Interfaces; 2015 Apr; 7(15):8233-42. PubMed ID: 25826467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Facile detection of photogenerated reactive oxygen species in TiO2 nanoparticles suspension using colorimetric probe-assisted spectrometric method.
    Kim C; Park HJ; Cha S; Yoon J
    Chemosphere; 2013 Nov; 93(9):2011-5. PubMed ID: 23953250
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molybdenum nanoparticles-induced cytotoxicity, oxidative stress, G2/M arrest, and DNA damage in mouse skin fibroblast cells (L929).
    Siddiqui MA; Saquib Q; Ahamed M; Farshori NN; Ahmad J; Wahab R; Khan ST; Alhadlaq HA; Musarrat J; Al-Khedhairy AA; Pant AB
    Colloids Surf B Biointerfaces; 2015 Jan; 125():73-81. PubMed ID: 25437066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reactive oxygen species at phospholipid bilayers: distribution, mobility and permeation.
    Cordeiro RM
    Biochim Biophys Acta; 2014 Jan; 1838(1 Pt B):438-44. PubMed ID: 24095673
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles.
    Li Y; Zhang W; Niu J; Chen Y
    ACS Nano; 2012 Jun; 6(6):5164-73. PubMed ID: 22587225
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tracking changes in rhodium nanoparticles in the environment, including their mobility and bioavailability in soil.
    Kowalska J; Biaduń E; Kińska K; Gniadek M; Krasnodębska-Ostręga B
    Sci Total Environ; 2022 Feb; 806(Pt 3):151272. PubMed ID: 34717987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings.
    Chen J; Liu X; Wang C; Yin SS; Li XL; Hu WJ; Simon M; Shen ZJ; Xiao Q; Chu CC; Peng XX; Zheng HL
    J Hazard Mater; 2015 Oct; 297():173-82. PubMed ID: 25958266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cytotoxicity and genotoxicity of CuO nanoparticles in sea urchin spermatozoa through oxidative stress.
    Gallo A; Manfra L; Boni R; Rotini A; Migliore L; Tosti E
    Environ Int; 2018 Sep; 118():325-333. PubMed ID: 29960187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.