These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 30601692)

  • 1. TRPV1 channels contribute to spontaneous glutamate release in nucleus tractus solitarii following chronic intermittent hypoxia.
    Kline DD; Wang S; Kunze DL
    J Neurophysiol; 2019 Mar; 121(3):881-892. PubMed ID: 30601692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of excitatory amino acid transporter restraint following chronic intermittent hypoxia contributes to synaptic alterations in nucleus tractus solitarii.
    Martinez D; Rogers RC; Hasser EM; Hermann GE; Kline DD
    J Neurophysiol; 2020 Jun; 123(6):2122-2135. PubMed ID: 32347148
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxytocin and corticotropin-releasing hormone exaggerate nucleus tractus solitarii neuronal and synaptic activity following chronic intermittent hypoxia.
    Gama de Barcellos Filho P; Dantzler HA; Hasser EM; Kline DD
    J Physiol; 2024 Jul; 602(14):3375-3400. PubMed ID: 38698722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct Calcium Sources Support Multiple Modes of Synaptic Release from Cranial Sensory Afferents.
    Fawley JA; Hofmann ME; Andresen MC
    J Neurosci; 2016 Aug; 36(34):8957-66. PubMed ID: 27559176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vanilloids selectively sensitize thermal glutamate release from TRPV1 expressing solitary tract afferents.
    Hofmann ME; Andresen MC
    Neuropharmacology; 2016 Feb; 101():401-11. PubMed ID: 26471418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chronic intermittent hypoxia depresses afferent neurotransmission in NTS neurons by a reduction in the number of active synapses.
    Almado CE; Machado BH; Leão RM
    J Neurosci; 2012 Nov; 32(47):16736-46. PubMed ID: 23175827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopamine inhibits N-type channels in visceral afferents to reduce synaptic transmitter release under normoxic and chronic intermittent hypoxic conditions.
    Kline DD; Hendricks G; Hermann G; Rogers RC; Kunze DL
    J Neurophysiol; 2009 May; 101(5):2270-8. PubMed ID: 19244351
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TRPV1 marks synaptic segregation of multiple convergent afferents at the rat medial solitary tract nucleus.
    Peters JH; McDougall SJ; Fawley JA; Andresen MC
    PLoS One; 2011; 6(9):e25015. PubMed ID: 21949835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 5-HT
    Fawley JA; Doyle MW; Andresen MC
    Brain Res; 2019 Oct; 1721():146346. PubMed ID: 31348913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive oxygen species enhance excitatory synaptic transmission in rat spinal dorsal horn neurons by activating TRPA1 and TRPV1 channels.
    Nishio N; Taniguchi W; Sugimura YK; Takiguchi N; Yamanaka M; Kiyoyuki Y; Yamada H; Miyazaki N; Yoshida M; Nakatsuka T
    Neuroscience; 2013 Sep; 247():201-12. PubMed ID: 23707800
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GABA(B)-mediated inhibition of multiple modes of glutamate release in the nucleus of the solitary tract.
    Fawley JA; Peters JH; Andresen MC
    J Neurophysiol; 2011 Oct; 106(4):1833-40. PubMed ID: 21734101
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cannabinoid 1 and transient receptor potential vanilloid 1 receptors discretely modulate evoked glutamate separately from spontaneous glutamate transmission.
    Fawley JA; Hofmann ME; Andresen MC
    J Neurosci; 2014 Jun; 34(24):8324-32. PubMed ID: 24920635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynasore blocks evoked release while augmenting spontaneous synaptic transmission from primary visceral afferents.
    Hofmann ME; Andresen MC
    PLoS One; 2017; 12(3):e0174915. PubMed ID: 28358887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acute lung injury in neonatal rats causes postsynaptic depression in nucleus tractus solitarii second-order neurons.
    Getsy PM; Mayer CA; MacFarlane PM; Jacono FJ; Wilson CG
    Respir Physiol Neurobiol; 2019 Nov; 269():103250. PubMed ID: 31352011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Depressed GABA and glutamate synaptic signaling by 5-HT1A receptors in the nucleus tractus solitarii and their role in cardiorespiratory function.
    Ostrowski TD; Ostrowski D; Hasser EM; Kline DD
    J Neurophysiol; 2014 Jun; 111(12):2493-504. PubMed ID: 24671532
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermally active TRPV1 tonically drives central spontaneous glutamate release.
    Shoudai K; Peters JH; McDougall SJ; Fawley JA; Andresen MC
    J Neurosci; 2010 Oct; 30(43):14470-5. PubMed ID: 20980604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. External QX-314 inhibits evoked cranial primary afferent synaptic transmission independent of TRPV1.
    Hofmann ME; Largent-Milnes TM; Fawley JA; Andresen MC
    J Neurophysiol; 2014 Dec; 112(11):2697-706. PubMed ID: 25185814
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sustained Hypoxia Alters nTS Glutamatergic Signaling and Expression and Function of Excitatory Amino Acid Transporters.
    Matott MP; Hasser EM; Kline DD
    Neuroscience; 2020 Mar; 430():131-140. PubMed ID: 32032667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic sustained hypoxia enhances both evoked EPSCs and norepinephrine inhibition of glutamatergic afferent inputs in the nucleus of the solitary tract.
    Zhang W; Carreño FR; Cunningham JT; Mifflin SW
    J Neurosci; 2009 Mar; 29(10):3093-102. PubMed ID: 19279246
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Primary afferent activation of thermosensitive TRPV1 triggers asynchronous glutamate release at central neurons.
    Peters JH; McDougall SJ; Fawley JA; Smith SM; Andresen MC
    Neuron; 2010 Mar; 65(5):657-69. PubMed ID: 20223201
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.