BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 30602117)

  • 1. Kinetic Analysis of Hepatic Metabolism Using Hyperpolarized Dihydroxyacetone.
    Kirpich A; Ragavan M; Bankson JA; McIntyre LM; Merritt ME
    J Chem Inf Model; 2019 Jan; 59(1):605-614. PubMed ID: 30602117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time detection of hepatic gluconeogenic and glycogenolytic states using hyperpolarized [2-13C]dihydroxyacetone.
    Moreno KX; Satapati S; DeBerardinis RJ; Burgess SC; Malloy CR; Merritt ME
    J Biol Chem; 2014 Dec; 289(52):35859-67. PubMed ID: 25352600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monitoring acute metabolic changes in the liver and kidneys induced by fructose and glucose using hyperpolarized [2-
    Marco-Rius I; von Morze C; Sriram R; Cao P; Chang GY; Milshteyn E; Bok RA; Ohliger MA; Pearce D; Kurhanewicz J; Larson PE; Vigneron DB; Merritt M
    Magn Reson Med; 2017 Jan; 77(1):65-73. PubMed ID: 27859575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing hepatic metabolism of [2-
    Marco-Rius I; Wright AJ; Hu DE; Savic D; Miller JJ; Timm KN; Tyler D; Brindle KM; Comment A
    MAGMA; 2021 Feb; 34(1):49-56. PubMed ID: 32910316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity enhancement for detection of hyperpolarized
    von Morze C; Tropp J; Chen AP; Marco-Rius I; Van Criekinge M; Skloss TW; Mammoli D; Kurhanewicz J; Vigneron DB; Ohliger MA; Merritt ME
    Magn Reson Med; 2018 Jul; 80(1):36-41. PubMed ID: 29193287
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiband spectral-spatial RF excitation for hyperpolarized [2-
    Marco-Rius I; Cao P; von Morze C; Merritt M; Moreno KX; Chang GY; Ohliger MA; Pearce D; Kurhanewicz J; Larson PE; Vigneron DB
    Magn Reson Med; 2017 Apr; 77(4):1419-1428. PubMed ID: 27017966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hyperpolarized Dihydroxyacetone Is a Sensitive Probe of Hepatic Gluconeogenic State.
    Ragavan M; McLeod MA; Giacalone AG; Merritt ME
    Metabolites; 2021 Jul; 11(7):. PubMed ID: 34357335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of glycerol and dihydroxyacetone on hepatic lipogenesis.
    Carmona A; Freedland RA
    Arch Biochem Biophys; 1989 May; 271(1):130-8. PubMed ID: 2712570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of glycerol and other intermediates on the incorporation of 14C-fructose and 14C-glucose to hepatic triglyceride.
    Wusteman MC; Macdonald I
    Metabolism; 1977 Aug; 26(8):921-30. PubMed ID: 875736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three ATP-dependent phosphorylating enzymes in the first committed step of dihydroxyacetone metabolism in Gluconobacter thailandicus NBRC3255.
    Kataoka N; Hirata K; Matsutani M; Ano Y; Nguyen TM; Adachi O; Matsushita K; Yakushi T
    Appl Microbiol Biotechnol; 2021 Feb; 105(3):1227-1236. PubMed ID: 33475798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increased net hepatic glucose output from gluconeogenic precursors after high-sucrose diet feeding in male rats.
    Pagliassotti MJ; Prach PA
    Am J Physiol; 1997 Feb; 272(2 Pt 2):R526-31. PubMed ID: 9124474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-step synthesis, biodegradation and biocompatibility of polyesters based on the metabolic synthon, dihydroxyacetone.
    Korley JN; Yazdi S; McHugh K; Kirk J; Anderson J; Putnam D
    Biomaterials; 2016 Aug; 98():41-52. PubMed ID: 27179432
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical and Metabolic Controls on Dihydroxyacetone Metabolism Lead to Suboptimal Growth of Escherichia coli.
    Peiro C; Millard P; de Simone A; Cahoreau E; Peyriga L; Enjalbert B; Heux S
    Appl Environ Microbiol; 2019 Aug; 85(15):. PubMed ID: 31126940
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part I--Honey systems.
    Grainger MN; Manley-Harris M; Lane JR; Field RJ
    Food Chem; 2016 Jul; 202():484-91. PubMed ID: 26920322
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A functionalizable biomaterial based on dihydroxyacetone, an intermediate of glucose metabolism.
    Zelikin AN; Zawaneh PN; Putnam D
    Biomacromolecules; 2006 Nov; 7(11):3239-44. PubMed ID: 17096556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metabolic flux analysis of recombinant Pichia pastoris growing on different glycerol/methanol mixtures by iterative fitting of NMR-derived (13)C-labelling data from proteinogenic amino acids.
    Jordà J; de Jesus SS; Peltier S; Ferrer P; Albiol J
    N Biotechnol; 2014 Jan; 31(1):120-32. PubMed ID: 23845285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of conversion of dihydroxyacetone to methylglyoxal in New Zealand mānuka honey: Part III--A model to simulate the conversion.
    Grainger MN; Manley-Harris M; Lane JR; Field RJ
    Food Chem; 2016 Jul; 202():500-6. PubMed ID: 26920324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hypothesis for examining dihydroxyacetone, the active component in sunless tanning products, as a topical prophylactic against SARS-COV-2 transmission.
    Perrin DM
    Med Hypotheses; 2020 Nov; 144():110280. PubMed ID: 33254584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo hyperpolarized carbon-13 magnetic resonance spectroscopy reveals increased pyruvate carboxylase flux in an insulin-resistant mouse model.
    Lee P; Leong W; Tan T; Lim M; Han W; Radda GK
    Hepatology; 2013 Feb; 57(2):515-24. PubMed ID: 22911492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in the concentrations of hepatic metabolites on administration of dihydroxyacetone or glycerol to starved rats and their relationship to the control of ketogenesis.
    Williamson DH; Veloso D; Ellington EV; Krebs HA
    Biochem J; 1969 Sep; 114(3):575-84. PubMed ID: 4309529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.