These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 30602252)

  • 1. Considering the effect of groundwater on bioretention using the Storm Water Management Model.
    Kim H; Mallari KJB; Baek J; Pak G; Choi HI; Yoon J
    J Environ Manage; 2019 Feb; 231():1270-1276. PubMed ID: 30602252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of the effects of low-impact development practices under different rainy types: case of Fuxing Island Park, Shanghai, China.
    Wang HW; Zhai YJ; Wei YY; Mao YF
    Environ Sci Pollut Res Int; 2019 Mar; 26(7):6706-6716. PubMed ID: 30632038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An evaluation of hydrologic modeling performance of EPA SWMM for bioretention.
    Gülbaz S; Kazezyılmaz-Alhan CM
    Water Sci Technol; 2017 Dec; 76(11-12):3035-3043. PubMed ID: 29210689
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Field monitoring of a LID-BMP treatment train system in China.
    Jia H; Wang X; Ti C; Zhai Y; Field R; Tafuri AN; Cai H; Yu SL
    Environ Monit Assess; 2015 Jun; 187(6):373. PubMed ID: 26009159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The optimization of Low Impact Development placement considering life cycle cost using Genetic Algorithm.
    Huang JJ; Xiao M; Li Y; Yan R; Zhang Q; Sun Y; Zhao T
    J Environ Manage; 2022 May; 309():114700. PubMed ID: 35180436
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Statistical evaluation of bioretention system for hydrologic performance.
    Li ZY; Lam KM
    Water Sci Technol; 2015; 71(11):1742-9. PubMed ID: 26038941
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrologic performance of bioretention in an expressway service area.
    Gao J; Pan J; Hu N; Xie C
    Water Sci Technol; 2018 Apr; 77(7-8):1829-1837. PubMed ID: 29676740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the low impact development strategies for highly urbanized area via auto-calibrated Storm Water Management Model (SWMM).
    Ekmekcioğlu Ö; Yılmaz M; Özger M; Tosunoğlu F
    Water Sci Technol; 2021 Nov; 84(9):2194-2213. PubMed ID: 34810305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel spatial optimization approach for the cost-effectiveness improvement of LID practices based on SWMM-FTC.
    Li S; Wang Z; Wu X; Zeng Z; Shen P; Lai C
    J Environ Manage; 2022 Apr; 307():114574. PubMed ID: 35085961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal implementation of low impact development for urban stormwater quantity and quality control using multi-objective optimization.
    Rezaei AR; Ismail Z; Niksokhan MH; Dayarian MA; Ramli AH; Yusoff S
    Environ Monit Assess; 2021 Mar; 193(4):241. PubMed ID: 33791871
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An assessment of the hydrologic effectiveness of low impact development (LID) practices for managing runoff with different objectives.
    Zhu Z; Chen Z; Chen X; Yu G
    J Environ Manage; 2019 Feb; 231():504-514. PubMed ID: 30388648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial allocation of LID practices with a water footprint approach.
    Chuang WK; Lin ZE; Lin TC; Lo SL; Chang CL; Chiueh PT
    Sci Total Environ; 2023 Feb; 859(Pt 2):160201. PubMed ID: 36395841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessing runoff control of low impact development in Hong Kong's dense community with reliable SWMM setup and calibration.
    Zhuang Q; Li M; Lu Z
    J Environ Manage; 2023 Nov; 345():118599. PubMed ID: 37423185
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A case in subtropical climate city: Assessing the bioretention hydraulic performance on storm in response to poor permeability soil.
    Huang J; Yu Z; Qin Y; Wang L; Huang Y; Huang Y
    J Environ Manage; 2021 Sep; 293():112952. PubMed ID: 34102494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrological modelling of green and grey roofs in cold climate with the SWMM model.
    Hamouz V; Muthanna TM
    J Environ Manage; 2019 Nov; 249():109350. PubMed ID: 31415926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiple-event study of bioretention for treatment of urban storm water runoff.
    Hsieh CH; Davis AP
    Water Sci Technol; 2005; 51(3-4):177-81. PubMed ID: 15850188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling of green roofs' hydrologic performance using EPA's SWMM.
    Burszta-Adamiak E; Mrowiec M
    Water Sci Technol; 2013; 68(1):36-42. PubMed ID: 23823537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal evaluation of urbanization using a hybrid approach.
    Ketabchy M; Sample DJ; Wynn-Thompson T; Nayeb Yazdi M
    J Environ Manage; 2018 Nov; 226():457-475. PubMed ID: 30145502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robustness analysis of storm water quality modelling with LID infrastructures from natural event-based field monitoring.
    Tang S; Jiang J; Zheng Y; Hong Y; Chung ES; Shamseldin AY; Wei Y; Wang X
    Sci Total Environ; 2021 Jan; 753():142007. PubMed ID: 32911170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model.
    Liu Y; Bralts VF; Engel BA
    Sci Total Environ; 2015 Apr; 511():298-308. PubMed ID: 25553544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.