These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30602252)

  • 21. [Water Quality and Three-Dimensional Fluorescence of Stormwater Runoff from Lined Bioretention Field Cells].
    Lin XY; Wang SM; Li Q; Xie YC
    Huan Jing Ke Xue; 2018 Oct; 39(10):4539-4546. PubMed ID: 30229601
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimal designs of LID based on LID experiments and SWMM for a small-scale community in Tianjin, north China.
    Yang B; Zhang T; Li J; Feng P; Miao Y
    J Environ Manage; 2023 May; 334():117442. PubMed ID: 36773451
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Testing of the Storm Water Management Model Low Impact Development Modules.
    Platz M; Simon M; Tryby M
    J Am Water Resour Assoc; 2020 Apr; 56(2):283-296. PubMed ID: 32601519
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimizing surface and contributing areas of bioretention cells for stormwater runoff quality and quantity management.
    Yang Y; Chui TFM
    J Environ Manage; 2018 Jan; 206():1090-1103. PubMed ID: 30029343
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new LID spatial allocation optimization system at neighborhood scale: Integrated SWMM with PICEA-g using MATLAB as the platform.
    Yu Y; Zhou Y; Guo Z; van Duin B; Zhang W
    Sci Total Environ; 2022 Jul; 831():154843. PubMed ID: 35351503
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An integrated framework for the comprehensive evaluation of low impact development strategies.
    Koc K; Ekmekcioğlu Ö; Özger M
    J Environ Manage; 2021 Sep; 294():113023. PubMed ID: 34119982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioretention storm water control measures decrease the toxicity of copper roof runoff.
    LaBarre WJ; Ownby DR; Rader KJ; Lev SM; Casey RE
    Environ Toxicol Chem; 2017 Jun; 36(6):1680-1688. PubMed ID: 27859652
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The impact of domestic rainwater harvesting systems in storm water runoff mitigation at the urban block scale.
    Palla A; Gnecco I; La Barbera P
    J Environ Manage; 2017 Apr; 191():297-305. PubMed ID: 28129562
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effects of Low-Impact Development Facilities (Water Systems of the Park) on Stormwater Runoff in Shallow Mountainous Areas Based on Dual-Model (SWMM and MIKE21) Simulations.
    Lai Y; Lu Y; Ding T; Sun H; Li X; Ge X
    Int J Environ Res Public Health; 2022 Nov; 19(21):. PubMed ID: 36361225
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Methodology to simulate unsaturated zone hydrology in Storm Water Management Model (SWMM) for green infrastructure design and evaluation.
    Tu MC; Wadzuk B; Traver R
    PLoS One; 2020; 15(7):e0235528. PubMed ID: 32628703
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Addition of overland runoff and flow routing methods to SWMM-model application to Hyderabad, India.
    Swathi V; Raju KS; Varma MRR
    Environ Monit Assess; 2020 Sep; 192(10):643. PubMed ID: 32935220
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The migration and accumulation of typical pollutants in the growing media layer of bioretention facilities.
    Gong Y; Li X; Xie P; Fu H; Nie L; Li J; Li Y
    Environ Sci Pollut Res Int; 2023 Mar; 30(15):44591-44606. PubMed ID: 36694065
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of a green roof practice using the coupled SWMM and HYDRUS models.
    Baek S; Ligaray M; Pachepsky Y; Chun JA; Yoon KS; Park Y; Cho KH
    J Environ Manage; 2020 May; 261():109920. PubMed ID: 31999613
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measuring performance of low impact development practices for the surface runoff management.
    Yang W; Brüggemann K; Seguya KD; Ahmed E; Kaeseberg T; Dai H; Hua P; Zhang J; Krebs P
    Environ Sci Ecotechnol; 2020 Jan; 1():100010. PubMed ID: 36160371
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhancing a rainfall-runoff model to assess the impacts of BMPs and LID practices on storm runoff.
    Liu Y; Ahiablame LM; Bralts VF; Engel BA
    J Environ Manage; 2015 Jan; 147():12-23. PubMed ID: 25261748
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Modeling urban storm rainfall runoff from diverse underlying surfaces and application for control design in Beijing.
    Ouyang W; Guo B; Hao F; Huang H; Li J; Gong Y
    J Environ Manage; 2012 Dec; 113():467-73. PubMed ID: 23122620
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated design workflow and a new tool for urban rainwater management.
    Chen Y; Samuelson HW; Tong Z
    J Environ Manage; 2016 Sep; 180():45-51. PubMed ID: 27208392
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application and evaluation of LID facilities in sponge airport, China.
    Peng J; Wang QQ; Yang XS; Yu L; Zhong X
    Water Sci Technol; 2022 Feb; 85(3):756-768. PubMed ID: 35166698
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assessment of LID practices for restoring pre-development runoff regime in an urbanized catchment in southern Finland.
    Guan M; Sillanpää N; Koivusalo H
    Water Sci Technol; 2015; 71(10):1485-91. PubMed ID: 26442490
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Runoff simulation of two typical urban green land types with the Stormwater Management Model (SWMM): sensitivity analysis and calibration of runoff parameters.
    Xu Z; Xiong L; Li H; Xu J; Cai X; Chen K; Wu J
    Environ Monit Assess; 2019 May; 191(6):343. PubMed ID: 31055667
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.