BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

458 related articles for article (PubMed ID: 30602787)

  • 1. Genomic encoding of transcriptional burst kinetics.
    Larsson AJM; Johnsson P; Hagemann-Jensen M; Hartmanis L; Faridani OR; Reinius B; Segerstolpe Å; Rivera CM; Ren B; Sandberg R
    Nature; 2019 Jan; 565(7738):251-254. PubMed ID: 30602787
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancer Regulation of Transcriptional Bursting Parameters Revealed by Forced Chromatin Looping.
    Bartman CR; Hsu SC; Hsiung CC; Raj A; Blobel GA
    Mol Cell; 2016 Apr; 62(2):237-247. PubMed ID: 27067601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Promoter-proximal pausing of RNA polymerase II defines a general rate-limiting step after transcription initiation.
    Krumm A; Hickey LB; Groudine M
    Genes Dev; 1995 Mar; 9(5):559-72. PubMed ID: 7698646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide kinetic properties of transcriptional bursting in mouse embryonic stem cells.
    Ochiai H; Hayashi T; Umeda M; Yoshimura M; Harada A; Shimizu Y; Nakano K; Saitoh N; Liu Z; Yamamoto T; Okamura T; Ohkawa Y; Kimura H; Nikaido I
    Sci Adv; 2020 Jun; 6(25):eaaz6699. PubMed ID: 32596448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local regulation of gene expression by lncRNA promoters, transcription and splicing.
    Engreitz JM; Haines JE; Perez EM; Munson G; Chen J; Kane M; McDonel PE; Guttman M; Lander ES
    Nature; 2016 Nov; 539(7629):452-455. PubMed ID: 27783602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genome-wide inference reveals that feedback regulations constrain promoter-dependent transcriptional burst kinetics.
    Luo S; Wang Z; Zhang Z; Zhou T; Zhang J
    Nucleic Acids Res; 2023 Jan; 51(1):68-83. PubMed ID: 36583343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional bursts explain autosomal random monoallelic expression and affect allelic imbalance.
    Larsson AJM; Ziegenhain C; Hagemann-Jensen M; Reinius B; Jacob T; Dalessandri T; Hendriks GJ; Kasper M; Sandberg R
    PLoS Comput Biol; 2021 Mar; 17(3):e1008772. PubMed ID: 33690599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of transcriptional burst frequency by histone acetylation.
    Nicolas D; Zoller B; Suter DM; Naef F
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):7153-7158. PubMed ID: 29915087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of factors influencing kinetics of herpes simplex virus transcription utilizing recombinant virus.
    Wagner EK; Petroski MD; Pande NT; Lieu PT; Rice M
    Methods; 1998 Sep; 16(1):105-16. PubMed ID: 9774520
    [TBL] [Abstract][Full Text] [Related]  

  • 10. scSLAM-seq reveals core features of transcription dynamics in single cells.
    Erhard F; Baptista MAP; Krammer T; Hennig T; Lange M; Arampatzi P; Jürges CS; Theis FJ; Saliba AE; Dölken L
    Nature; 2019 Jul; 571(7765):419-423. PubMed ID: 31292545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. BISC: accurate inference of transcriptional bursting kinetics from single-cell transcriptomic data.
    Luo X; Qin F; Xiao F; Cai G
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36326081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. cis-acting elements involved in transcriptional regulation of the herpes simplex virus type 1 latency-associated promoter 1 (LAP1) in vitro and in vivo.
    Soares K; Hwang DY; Ramakrishnan R; Schmidt MC; Fink DJ; Glorioso JC
    J Virol; 1996 Aug; 70(8):5384-94. PubMed ID: 8764049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic modulation of enhancer responsiveness by core promoter elements in living Drosophila embryos.
    Yokoshi M; Kawasaki K; Cambón M; Fukaya T
    Nucleic Acids Res; 2022 Jan; 50(1):92-107. PubMed ID: 34897508
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters.
    Yang C; Bolotin E; Jiang T; Sladek FM; Martinez E
    Gene; 2007 Mar; 389(1):52-65. PubMed ID: 17123746
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure of silent transcription intervals and noise characteristics of mammalian genes.
    Zoller B; Nicolas D; Molina N; Naef F
    Mol Syst Biol; 2015 Jul; 11(7):823. PubMed ID: 26215071
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Core promoter-specific gene regulation: TATA box selectivity and Initiator-dependent bi-directionality of serum response factor-activated transcription.
    Xu M; Gonzalez-Hurtado E; Martinez E
    Biochim Biophys Acta; 2016 Apr; 1859(4):553-63. PubMed ID: 26824723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cis-acting elements responsible for dopaminergic neuron-specific expression of zebrafish slc6a3 (dopamine transporter) in vivo are located remote from the transcriptional start site.
    Bai Q; Burton EA
    Neuroscience; 2009 Dec; 164(3):1138-51. PubMed ID: 19755139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SCALE: modeling allele-specific gene expression by single-cell RNA sequencing.
    Jiang Y; Zhang NR; Li M
    Genome Biol; 2017 Apr; 18(1):74. PubMed ID: 28446220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancers and super-enhancers have an equivalent regulatory role in embryonic stem cells through regulation of single or multiple genes.
    Moorthy SD; Davidson S; Shchuka VM; Singh G; Malek-Gilani N; Langroudi L; Martchenko A; So V; Macpherson NN; Mitchell JA
    Genome Res; 2017 Feb; 27(2):246-258. PubMed ID: 27895109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inferring the kinetics of stochastic gene expression from single-cell RNA-sequencing data.
    Kim JK; Marioni JC
    Genome Biol; 2013 Jan; 14(1):R7. PubMed ID: 23360624
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.