These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 30603064)

  • 21. Photoluminescence shift in frustules of two pennate diatoms and nanostructural changes to their pores.
    Arteaga-Larios NV; Nahmad Y; Navarro-Contreras HR; Encinas A; Viridiana García-Meza J
    Luminescence; 2014 Dec; 29(8):969-76. PubMed ID: 24585632
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Numerical Analysis of the Light Modulation by the Frustule of
    Ghobara M; Oschatz C; Fratzl P; Reissig L
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An integrated approach for probing the structure and mechanical properties of diatoms: Toward engineered nanotemplates.
    Moreno MD; Ma K; Schoenung J; Dávila LP
    Acta Biomater; 2015 Oct; 25():313-24. PubMed ID: 26196080
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Enhanced Photoluminescence Detection of Immunocomplex Formation by Antibody-Functionalized, Ge-Doped Biosilica from the Diatom
    Gale DK; Rorrer GL
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446467
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tentative identification of key factors determining the hemostatic efficiency of diatom frustule.
    Wang L; Pan K; Zhang L; Zhou C; Li Y; Zhu B; Han J
    Biomater Sci; 2021 Mar; 9(6):2162-2173. PubMed ID: 33496686
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards uniformly oriented diatom frustule monolayers: Experimental and theoretical analyses.
    Li A; Zhang W; Ghaffarivardavagh R; Wang X; Anderson SW; Zhang X
    Microsyst Nanoeng; 2016; 2():16064. PubMed ID: 31057843
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biosilica structures obtained from Nitzschia, Ditylum, Skeletonema, and Coscinodiscus diatom by a filtration-aided acid cleaning method.
    Wang Y; Zhang D; Cai J; Pan J; Chen M; Li A; Jiang Y
    Appl Microbiol Biotechnol; 2012 Sep; 95(5):1165-78. PubMed ID: 22552901
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In Situ Manipulation and Micromechanical Characterization of Diatom Frustule Constituents Using Focused Ion Beam Scanning Electron Microscopy.
    Soleimani M; van Breemen LCA; Maddala SP; Joosten RRM; Wu H; Schreur-Piet I; van Benthem RATM; Friedrich H
    Small Methods; 2021 Dec; 5(12):e2100638. PubMed ID: 34928031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biological fabrication of photoluminescent nanocomb structures by metabolic incorporation of germanium into the biosilica of the diatom Nitzschia frustulum.
    Qin T; Gutu T; Jiao J; Chang CH; Rorrer GL
    ACS Nano; 2008 Jun; 2(6):1296-304. PubMed ID: 19206348
    [TBL] [Abstract][Full Text] [Related]  

  • 30. pH effect on the susceptibility to parasitoid infection in the marine diatom
    Kühn SF; Köhler-Rink S
    Mar Biol; 2008; 154(1):109-116. PubMed ID: 24391233
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Numerical and experimental investigation of light trapping effect of nanostructured diatom frustules.
    Chen X; Wang C; Baker E; Sun C
    Sci Rep; 2015 Jul; 5():11977. PubMed ID: 26155924
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pore architecture of diatom frustules: potential nanostructured membranes for molecular and particle separations.
    Losic D; Rosengarten G; Mitchell JG; Voelcker NH
    J Nanosci Nanotechnol; 2006 Apr; 6(4):982-9. PubMed ID: 16736754
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of hierarchical design and morphology in the mechanical response of diatom-inspired structures via simulation.
    Gutiérrez A; Guney MG; Fedder GK; Dávila LP
    Biomater Sci; 2017 Dec; 6(1):146-153. PubMed ID: 29147717
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microstructure provides insights into evolutionary design and resilience of Coscinodiscus sp. frustule.
    Aitken ZH; Luo S; Reynolds SN; Thaulow C; Greer JR
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2017-22. PubMed ID: 26858446
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interference patterns and extinction ratio of the diatom Coscinodiscus granii.
    Maibohm C; Friis SM; Ellegaard M; Rottwitt K
    Opt Express; 2015 Apr; 23(7):9543-8. PubMed ID: 25968782
    [TBL] [Abstract][Full Text] [Related]  

  • 36. AFM nanoindentations of diatom biosilica surfaces.
    Losic D; Short K; Mitchell JG; Lal R; Voelcker NH
    Langmuir; 2007 Apr; 23(9):5014-21. PubMed ID: 17397194
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Study on the Hemostasis Characteristics of Biomaterial Frustules Obtained from Diatom
    Luo Y; Li S; Shen K; Song Y; Zhang J; Su W; Yang X
    Materials (Basel); 2021 Jul; 14(13):. PubMed ID: 34279325
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Underwater Light Manipulation by the Benthic Diatom
    De Tommasi E; Rea I; Ferrara MA; De Stefano L; De Stefano M; Al-Handal AY; Stamenković M; Wulff A
    Nanomaterials (Basel); 2021 Oct; 11(11):. PubMed ID: 34835620
    [TBL] [Abstract][Full Text] [Related]  

  • 39. MICROMORPHOGENESIS DURING DIATOM WALL FORMATION PRODUCES SILICEOUS NANOSTRUCTURES WITH DIFFERENT PROPERTIES(1).
    Crawford SA; Chiovitti A; Pickett-Heaps J; Wetherbee R
    J Phycol; 2009 Dec; 45(6):1353-62. PubMed ID: 27032593
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multi-wavelength study of light transmitted through a single marine centric diatom.
    De Tommasi E; Rea I; Mocella V; Moretti L; De Stefano M; Rendina I; De Stefano L
    Opt Express; 2010 Jun; 18(12):12203-12. PubMed ID: 20588345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.