These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30603064)

  • 41. Pleuralins are involved in theca differentiation in the diatom Cylindrotheca fusiformis.
    Kröger N; Wetherbee R
    Protist; 2000 Oct; 151(3):263-73. PubMed ID: 11079771
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Architecture and material properties of diatom shells provide effective mechanical protection.
    Hamm CE; Merkel R; Springer O; Jurkojc P; Maier C; Prechtel K; Smetacek V
    Nature; 2003 Feb; 421(6925):841-3. PubMed ID: 12594512
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A simple method for SEM examination of sectioned diatom frustules.
    Massé G; Poulin M; Belt ST; Robert JM; Barreau A; Rincé Y; Rowland SJ
    J Microsc; 2001 Oct; 204(Pt 1):87-92. PubMed ID: 11580816
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Luminescence properties of a nanoporous freshwater diatom.
    Goswami B; Choudhury A; Buragohain AK
    Luminescence; 2012; 27(1):16-9. PubMed ID: 21618682
    [TBL] [Abstract][Full Text] [Related]  

  • 45. SCALY INCUNABULA, AUXOSPORE DEVELOPMENT, AND GIRDLE POLYMORPHISM IN SELLAPHORA MARVANII SP. NOV. (BACILLARIOPHYCEAE)(1).
    Mann DG; Poulíčková A; Sato S; Evans KM
    J Phycol; 2011 Dec; 47(6):1368-78. PubMed ID: 27020361
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Geometrical frustration of phase-separated domains in
    Feofilova M; Schüepp S; Schmid R; Hacker F; Spanke HT; Bain N; Jensen KE; Dufresne ER
    Proc Natl Acad Sci U S A; 2022 Aug; 119(31):e2201014119. PubMed ID: 35905319
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Morphology and physical-chemical properties of baked nanoporous frustules.
    Umemura K; Noguchi Y; Ichinose T; Hirose Y; Mayama S
    J Nanosci Nanotechnol; 2010 Aug; 10(8):5220-4. PubMed ID: 21125874
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Study on tribological mechanism for multi-layer porous structure of diatom frustule.
    Meng F; Gao G; Jia Z
    Microb Ecol; 2015 Jan; 69(1):45-58. PubMed ID: 25204749
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biosilica slab photonic crystals as an alternative to cleanroom nanofabrication?
    Goessling JW; Santiago González AA; Paul Raj VS; Ashworth MP; Manning SR; Lopez-Garcia M
    Faraday Discuss; 2020 Oct; 223(0):261-277. PubMed ID: 32725039
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Diatom-based label-free optical biosensor for biomolecules.
    Viji S; Anbazhagi M; Ponpandian N; Mangalaraj D; Jeyanthi S; Santhanam P; Devi AS; Viswanathan C
    Appl Biochem Biotechnol; 2014 Oct; 174(3):1166-73. PubMed ID: 24989453
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transcriptional responses to salinity-induced changes in cell wall morphology of the euryhaline diatom Pleurosira laevis.
    Kamakura S; Bilcke G; Sato S
    J Phycol; 2024 Apr; 60(2):308-326. PubMed ID: 38446079
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Bioaccumulation of Titanium in diatom Cyclotella atomus Hust.
    Sanniyasi E; Gopal RK; Damodharan R; Thirumurugan T; Mahendran V
    Biometals; 2024 Feb; 37(1):71-86. PubMed ID: 37566151
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Frustules of Amphora sp. as a photonic crystal with photoluminescent CdS nanoparticles.
    González-Fortuna G; Arteaga-Larios N; Nahmad Y; Navarro-Contreras HR; García-Meza JV
    Luminescence; 2021 May; 36(3):788-794. PubMed ID: 33386703
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Silica Nanowire Growth on Coscinodiscus Species Diatom Frustules via Vapor-Liquid-Solid Process.
    Li A; Zhao X; Anderson S; Zhang X
    Small; 2018 Nov; 14(47):e1801822. PubMed ID: 30369025
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Investigation of mechanical properties of diatom frustules using nanoindentation.
    Subhash G; Yao S; Bellinger B; Gretz MR
    J Nanosci Nanotechnol; 2005 Jan; 5(1):50-6. PubMed ID: 15762160
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Beyond micromachining: the potential of diatoms.
    Parkinson J; Gordon R
    Trends Biotechnol; 1999 May; 17(5):190-6. PubMed ID: 10322443
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Centric diatom morphogenesis: a model based on a DLA algorithm investigating the potential role of microtubules.
    Parkinson J; Brechet Y; Gordon R
    Biochim Biophys Acta; 1999 Oct; 1452(1):89-102. PubMed ID: 10525163
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Chemical and Biological Sensing Using Diatom Photonic Crystal Biosilica With In-Situ Growth Plasmonic Nanoparticles.
    Kong X; Squire K; Li E; LeDuff P; Rorrer GL; Tang S; Chen B; McKay CP; Navarro-Gonzalez R; Wang AX
    IEEE Trans Nanobioscience; 2016 Dec; 15(8):828-834. PubMed ID: 27959817
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Effects of abiotic factors on the nanostructure of diatom frustules-ranges and variability.
    Su Y; Lundholm N; Ellegaard M
    Appl Microbiol Biotechnol; 2018 Jul; 102(14):5889-5899. PubMed ID: 29802480
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Titanium uptake and incorporation into silica nanostructures by the diatom
    Chauton MS; Skolem LM; Olsen LM; Vullum PE; Walmsley J; Vadstein O
    J Appl Phycol; 2015; 27(2):777-786. PubMed ID: 25866446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.