These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30603176)

  • 21. Size determination of red blood cell aggregates induced by dextran using ultrasound backscattering phenomenon.
    Boynard M; Lelievre JC
    Biorheology; 1990; 27(1):39-46. PubMed ID: 1694460
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of a sudden flow reduction on red blood cell rouleau formation and orientation using RF backscattered power.
    Qin Z; Durand LG; Allard L; Cloutier G
    Ultrasound Med Biol; 1998 May; 24(4):503-11. PubMed ID: 9651960
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Kinetics of the "black hole" phenomenon in ultrasound backscattering measurements with red blood cell aggregation.
    Qin Z; Durand LG; Cloutier G
    Ultrasound Med Biol; 1998 Feb; 24(2):245-56. PubMed ID: 9550183
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Statistical variations of ultrasound signals backscattered from flowing blood.
    Huang CC; Wang SH
    Ultrasound Med Biol; 2007 Dec; 33(12):1943-54. PubMed ID: 17673357
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A system-based approach to modeling the ultrasound signal backscattered by red blood cells.
    Fontaine I; Bertrand M; Cloutier G
    Biophys J; 1999 Nov; 77(5):2387-99. PubMed ID: 10545342
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Frequency dependence of attenuation and backscatter coefficient of ex vivo human lymphedema dermis.
    Omura M; Yoshida K; Akita S; Yamaguchi T
    J Med Ultrason (2001); 2020 Jan; 47(1):25-34. PubMed ID: 31515646
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ultrasound backscatter at 30 MHz from human blood: influence of rouleau size affected by blood modification and shear rate.
    van der Heiden MS; de Kroon MG; Bom N; Borst C
    Ultrasound Med Biol; 1995; 21(6):817-26. PubMed ID: 8571469
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cyclic variations of high-frequency ultrasonic backscattering from blood under pulsatile flow.
    Huang CC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2009 Aug; 56(8):1677-88. PubMed ID: 19686983
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cyclic changes in blood echogenicity under pulsatile flow are frequency dependent.
    Nguyen LC; Yu FT; Cloutier G
    Ultrasound Med Biol; 2008 Apr; 34(4):664-73. PubMed ID: 18187250
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transbronchial evaluation of peripheral pulmonary lesions using ultrasonic spectrum analysis in lung cancer patients.
    Ishiwata T; Terada J; Nakajima T; Tsushima K; Tatsumi K
    Respirology; 2019 Oct; 24(10):1005-1010. PubMed ID: 30912246
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The intensity reflection coefficient: a complementary method for investigating blood backscattering properties with ultrasound.
    Amararene A; Cloutier G
    Clin Hemorheol Microcirc; 2008; 38(3):189-200. PubMed ID: 18239261
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterisation of coronary atherosclerotic morphology by spectral analysis of radiofrequency signal: in vitro intravascular ultrasound study with histological and radiological validation.
    Moore MP; Spencer T; Salter DM; Kearney PP; Shaw TR; Starkey IR; Fitzgerald PJ; Erbel R; Lange A; McDicken NW; Sutherland GR; Fox KA
    Heart; 1998 May; 79(5):459-67. PubMed ID: 9659192
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dielectric approach to the investigation of erythrocyte aggregation: I. Experimental basis of the method.
    Pribush A; Meiselman HJ; Meyerstein D; Meyerstein N
    Biorheology; 1999; 36(5-6):411-23. PubMed ID: 10818639
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-frequency ultrasound detection of cell death: Spectral differentiation of different forms of cell death
    Pasternak MM; Sadeghi-Naini A; Ranieri SM; Giles A; Oelze ML; Kolios MC; Czarnota GJ
    Oncoscience; 2016; 3(9-10):275-287. PubMed ID: 28050578
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling and analysis of ultrasound backscattering by spherical aggregates and rouleaux of red blood cells.
    Teh BG; Cloutier G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(4):1025-35. PubMed ID: 18238637
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microfluidic-Based Measurement Method of Red Blood Cell Aggregation under Hematocrit Variations.
    Kang YJ
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28878199
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection of blood coagulation and clot formation using quantitative ultrasonic parameters.
    Huang CC; Wang SH; Tsui PH
    Ultrasound Med Biol; 2005 Nov; 31(11):1567-73. PubMed ID: 16286034
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Spectrum Analysis of Endobronchial Ultrasound Radiofrequency of Lymph NodesĀ in Patients With Lung Cancer.
    Nakajima T; Shingyoji M; Anayama T; Kimura H; Yasufuku K; Yoshino I
    Chest; 2016 Jun; 149(6):1393-9. PubMed ID: 26836932
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cellularity and fibrin mesh properties as a basis for ultrasonic tissue characterization of blood clots and thrombi.
    Loiacono LA; Sigel B; Feleppa EJ; Swami VK; Parsons RE; Justin J; Yaremko MM; Rorke M; Kodama I; Golub RM
    Ultrasound Med Biol; 1992; 18(4):399-410. PubMed ID: 1509615
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Measurement of the Doppler power of flowing blood using ultrasound Doppler devices.
    Huang CC; Chou HL; Chen PY
    Ultrasound Med Biol; 2015 Feb; 41(2):565-73. PubMed ID: 25542489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.