These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 30603177)

  • 1. Flickering exercise video produces mirror neuron system (MNS) activation and steady state visually evoked potentials (SSVEPs).
    Lim H; Ku J
    Biomed Eng Lett; 2017 Nov; 7(4):281-286. PubMed ID: 30603177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a flickering action video based steady state visual evoked potential triggered brain computer interface-functional electrical stimulation for a rehabilitative action observation game.
    Son JE; Choi H; Lim H; Ku J
    Technol Health Care; 2020; 28(S1):509-519. PubMed ID: 32364183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Brain-Computer Interface-Based Action Observation Game That Enhances Mu Suppression.
    Lim H; Ku J
    IEEE Trans Neural Syst Rehabil Eng; 2018 Dec; 26(12):2290-2296. PubMed ID: 30371380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple-command single-frequency SSVEP-based BCI system using flickering action video.
    Lim H; Ku J
    J Neurosci Methods; 2019 Feb; 314():21-27. PubMed ID: 30659844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local Interactions between Steady-State Visually Evoked Potentials at Nearby Flickering Frequencies.
    Liza K; Ray S
    J Neurosci; 2022 May; 42(19):3965-3974. PubMed ID: 35396325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An approach for brain-controlled prostheses based on Scene Graph Steady-State Visual Evoked Potentials.
    Li R; Zhang X; Li H; Zhang L; Lu Z; Chen J
    Brain Res; 2018 Aug; 1692():142-153. PubMed ID: 29777674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tradeoff between User Experience and BCI Classification Accuracy with Frequency Modulated Steady-State Visual Evoked Potentials.
    Dreyer AM; Herrmann CS; Rieger JW
    Front Hum Neurosci; 2017; 11():391. PubMed ID: 28798676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multi-command SSVEP-based BCI system based on single flickering frequency half-field steady-state visual stimulation.
    Punsawad Y; Wongsawat Y
    Med Biol Eng Comput; 2017 Jun; 55(6):965-977. PubMed ID: 27651060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polychromatic SSVEP stimuli with subtle flickering adapted to brain-display interactions.
    Chien YY; Lin FC; Zao JK; Chou CC; Huang YP; Kuo HY; Wang Y; Jung TP; Shieh HD
    J Neural Eng; 2017 Feb; 14(1):016018. PubMed ID: 28000607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An SSVEP-actuated brain computer interface using phase-tagged flickering sequences: a cursor system.
    Lee PL; Sie JJ; Liu YJ; Wu CH; Lee MH; Shu CH; Li PH; Sun CW; Shyu KK
    Ann Biomed Eng; 2010 Jul; 38(7):2383-97. PubMed ID: 20177780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a hybrid brain-computer interface based on repetitive visual stimuli with missing events.
    Wu Y; Li M; Wang J
    J Neuroeng Rehabil; 2016 Jul; 13(1):66. PubMed ID: 27460070
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An amplitude-modulated visual stimulation for reducing eye fatigue in SSVEP-based brain-computer interfaces.
    Chang MH; Baek HJ; Lee SM; Park KS
    Clin Neurophysiol; 2014 Jul; 125(7):1380-91. PubMed ID: 24368034
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency-modulated steady-state visual evoked potentials: a new stimulation method for brain-computer interfaces.
    Dreyer AM; Herrmann CS
    J Neurosci Methods; 2015 Feb; 241():1-9. PubMed ID: 25522824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mirror-neuron system recruitment by action observation: effects of focal brain damage on mu suppression.
    Frenkel-Toledo S; Bentin S; Perry A; Liebermann DG; Soroker N
    Neuroimage; 2014 Feb; 87():127-37. PubMed ID: 24140938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Motor Imagery Training Using a Hybrid BCI With Feedback.
    Yu T; Xiao J; Wang F; Zhang R; Gu Z; Cichocki A; Li Y
    IEEE Trans Biomed Eng; 2015 Jul; 62(7):1706-17. PubMed ID: 25680205
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comparison of three brain-computer interfaces based on event-related desynchronization, steady state visual evoked potentials, or a hybrid approach using both signals.
    Brunner C; Allison BZ; Altstätter C; Neuper C
    J Neural Eng; 2011 Apr; 8(2):025010. PubMed ID: 21436538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steady-state visually evoked potential is modulated by the difference of recognition condition.
    Minami T; Azuma K; Nakauchi S
    PLoS One; 2020; 15(7):e0235309. PubMed ID: 32614860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emotional faces boost up steady-state visual responses for brain-computer interface.
    Bakardjian H; Tanaka T; Cichocki A
    Neuroreport; 2011 Feb; 22(3):121-5. PubMed ID: 21178643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency recognition in an SSVEP-based brain computer interface using empirical mode decomposition and refined generalized zero-crossing.
    Wu CH; Chang HC; Lee PL; Li KS; Sie JJ; Sun CW; Yang CY; Li PH; Deng HT; Shyu KK
    J Neurosci Methods; 2011 Mar; 196(1):170-81. PubMed ID: 21194547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of stimulation frequency and stimulation waveform on steady-state visual evoked potentials using a computer monitor.
    Chen X; Wang Y; Zhang S; Xu S; Gao X
    J Neural Eng; 2019 Oct; 16(6):066007. PubMed ID: 31220820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.