These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30603538)

  • 1. Osteochondral Regeneration with a Scaffold-Free Three-Dimensional Construct of Adipose Tissue-Derived Mesenchymal Stromal Cells in Pigs.
    Murata D; Akieda S; Misumi K; Nakayama K
    Tissue Eng Regen Med; 2018 Feb; 15(1):101-113. PubMed ID: 30603538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A preliminary study of osteochondral regeneration using a scaffold-free three-dimensional construct of porcine adipose tissue-derived mesenchymal stem cells.
    Murata D; Tokunaga S; Tamura T; Kawaguchi H; Miyoshi N; Fujiki M; Nakayama K; Misumi K
    J Orthop Surg Res; 2015 Mar; 10():35. PubMed ID: 25890366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Osteochondral regeneration using scaffold-free constructs of adipose tissue-derived mesenchymal stem cells made by a bio three-dimensional printer with a needle-array in rabbits.
    Murata D; Kunitomi Y; Harada K; Tokunaga S; Takao S; Nakayama K
    Regen Ther; 2020 Dec; 15():77-89. PubMed ID: 33426205
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Osteochondral regeneration of the femoral medial condyle by using a scaffold-free 3D construct of synovial membrane-derived mesenchymal stem cells in horses.
    Murata D; Ishikawa S; Sunaga T; Saito Y; Sogawa T; Nakayama K; Hobo S; Hatazoe T
    BMC Vet Res; 2022 Jan; 18(1):53. PubMed ID: 35065631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteochondral regeneration using constructs of mesenchymal stem cells made by bio three-dimensional printing in mini-pigs.
    Yamasaki A; Kunitomi Y; Murata D; Sunaga T; Kuramoto T; Sogawa T; Misumi K
    J Orthop Res; 2019 Jun; 37(6):1398-1408. PubMed ID: 30561041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Repairing defects of rabbit articular cartilage and subchondral bone with biphasic scaffold combined bone marrow stromal stem cells].
    Liu M; Xiang Z; Pei F; Huang F; Cen S; Zhong G; Fan H; Xiao Y; Sun J; Gao Y
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2010 Jan; 24(1):87-93. PubMed ID: 20135980
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous regeneration of full-thickness cartilage and subchondral bone defects in vivo using a three-dimensional scaffold-free autologous construct derived from high-density bone marrow-derived mesenchymal stem cells.
    Ishihara K; Nakayama K; Akieda S; Matsuda S; Iwamoto Y
    J Orthop Surg Res; 2014 Oct; 9():98. PubMed ID: 25312099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteochondral repair using a scaffold-free tissue-engineered construct derived from synovial mesenchymal stem cells and a hydroxyapatite-based artificial bone.
    Shimomura K; Moriguchi Y; Ando W; Nansai R; Fujie H; Hart DA; Gobbi A; Kita K; Horibe S; Shino K; Yoshikawa H; Nakamura N
    Tissue Eng Part A; 2014 Sep; 20(17-18):2291-304. PubMed ID: 24655056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Repair of porcine articular cartilage defect with a biphasic osteochondral composite.
    Jiang CC; Chiang H; Liao CJ; Lin YJ; Kuo TF; Shieh CS; Huang YY; Tuan RS
    J Orthop Res; 2007 Oct; 25(10):1277-90. PubMed ID: 17576624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of an extracellular matrix-derived acellular biphasic scaffold/cell construct in the repair of a large articular high-load-bearing osteochondral defect in a canine model.
    Yang Q; Peng J; Lu SB; Guo QY; Zhao B; Zhang L; Wang AY; Xu WJ; Xia Q; Ma XL; Hu YC; Xu BS
    Chin Med J (Engl); 2011 Dec; 124(23):3930-8. PubMed ID: 22340321
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repair of porcine articular osteochondral defects in non-weightbearing areas with autologous bone marrow stromal cells.
    Zhou G; Liu W; Cui L; Wang X; Liu T; Cao Y
    Tissue Eng; 2006 Nov; 12(11):3209-21. PubMed ID: 17518635
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteochondral Regeneration Using Adipose Tissue-Derived Mesenchymal Stem Cells.
    Murata D; Fujimoto R; Nakayama K
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32438742
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaffold-Free Cartilage Construct from Infrapatellar Fat Pad Stem Cells for Cartilage Restoration.
    Sriwatananukulkit O; Tawonsawatruk T; Rattanapinyopituk K; Luangwattanawilai T; Srikaew N; Hemstapat R
    Tissue Eng Part A; 2022 Mar; 28(5-6):199-211. PubMed ID: 32972295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Autologous tissue transplantations for osteochondral repair.
    Christensen BB
    Dan Med J; 2016 Apr; 63(4):. PubMed ID: 27034191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regeneration of hyaline-like cartilage and subchondral bone simultaneously by poly(l-glutamic acid) based osteochondral scaffolds with induced autologous adipose derived stem cells.
    Zhang K; He S; Yan S; Li G; Zhang D; Cui L; Yin J
    J Mater Chem B; 2016 Apr; 4(15):2628-2645. PubMed ID: 32263287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Repair of large articular osteochondral defects using hybrid scaffolds and bone marrow-derived mesenchymal stem cells in a rabbit model.
    Shao X; Goh JC; Hutmacher DW; Lee EH; Zigang G
    Tissue Eng; 2006 Jun; 12(6):1539-51. PubMed ID: 16846350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteochondral regeneration with a novel aragonite-hyaluronate biphasic scaffold: up to 12-month follow-up study in a goat model.
    Kon E; Filardo G; Shani J; Altschuler N; Levy A; Zaslav K; Eisman JE; Robinson D
    J Orthop Surg Res; 2015 May; 10():81. PubMed ID: 26018574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Repairing porcine knee joint osteochondral defects at non-weight bearing area by autologous BMSC].
    Zhou GD; Wang XY; Miao CL; Liu TY; Zhu L; Liu DL; Cui L; Liu W; Cao YL
    Zhonghua Yi Xue Za Zhi; 2004 Jun; 84(11):925-31. PubMed ID: 15329281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of scaffold stiffness on subchondral bone and subsequent cartilage regeneration in an ovine model of osteochondral defect healing.
    Schlichting K; Schell H; Kleemann RU; Schill A; Weiler A; Duda GN; Epari DR
    Am J Sports Med; 2008 Dec; 36(12):2379-91. PubMed ID: 18952905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomimetic design and fabrication of multilayered osteochondral scaffolds by low-temperature deposition manufacturing and thermal-induced phase-separation techniques.
    Zhang T; Zhang H; Zhang L; Jia S; Liu J; Xiong Z; Sun W
    Biofabrication; 2017 May; 9(2):025021. PubMed ID: 28462906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.