These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30603538)

  • 21. Repair of osteochondral defects with rehydrated freeze-dried oligo[poly(ethylene glycol) fumarate] hydrogels seeded with bone marrow mesenchymal stem cells in a porcine model.
    Lim CT; Ren X; Afizah MH; Tarigan-Panjaitan S; Yang Z; Wu Y; Chian KS; Mikos AG; Hui JH
    Tissue Eng Part A; 2013 Aug; 19(15-16):1852-61. PubMed ID: 23517496
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A triphasic biomimetic BMSC-loaded scaffold for osteochondral integrated regeneration in rabbits and pigs.
    Wang Z; Cao W; Wu F; Ke X; Wu X; Zhou T; Yang J; Yang G; Zhong C; Gou Z; Gao C
    Biomater Sci; 2023 Apr; 11(8):2924-2934. PubMed ID: 36892448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Repair of osteochondral defects with in vitro engineered cartilage based on autologous bone marrow stromal cells in a swine model.
    He A; Liu L; Luo X; Liu Y; Liu Y; Liu F; Wang X; Zhang Z; Zhang W; Liu W; Cao Y; Zhou G
    Sci Rep; 2017 Jan; 7():40489. PubMed ID: 28084417
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Repair of superficial osteochondral defects with an autologous scaffold-free cartilage construct in a caprine model: implantation method and short-term results.
    Brehm W; Aklin B; Yamashita T; Rieser F; Trüb T; Jakob RP; Mainil-Varlet P
    Osteoarthritis Cartilage; 2006 Dec; 14(12):1214-26. PubMed ID: 16820305
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of 2 Different Formulations of Artificial Bone for a Hybrid Implant With a Tissue-Engineered Construct Derived From Synovial Mesenchymal Stem Cells: A Study Using a Rabbit Osteochondral Defect Model.
    Shimomura K; Moriguchi Y; Nansai R; Fujie H; Ando W; Horibe S; Hart DA; Gobbi A; Yoshikawa H; Nakamura N
    Am J Sports Med; 2017 Mar; 45(3):666-675. PubMed ID: 28272938
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of osteochondral defect size on cartilage regeneration using a double-network hydrogel.
    Higa K; Kitamura N; Goto K; Kurokawa T; Gong JP; Kanaya F; Yasuda K
    BMC Musculoskelet Disord; 2017 May; 18(1):210. PubMed ID: 28532476
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Cartilage repair and subchondral bone reconstruction based on three-dimensional printing technique].
    Zhang W; Lian Q; Li D; Wang K; Jin Z; Bian W; Liu Y; He J; Wang L
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Mar; 28(3):318-24. PubMed ID: 24844012
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Healing of Osteochondral Defects Implanted with Biomimetic Scaffolds of Poly(ε-Caprolactone)/Hydroxyapatite and Glycidyl-Methacrylate-Modified Hyaluronic Acid in a Minipig.
    Hsieh YH; Shen BY; Wang YH; Lin B; Lee HM; Hsieh MF
    Int J Mol Sci; 2018 Apr; 19(4):. PubMed ID: 29642550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transplantation of autologous endothelial progenitor cells in porous PLGA scaffolds create a microenvironment for the regeneration of hyaline cartilage in rabbits.
    Chang NJ; Lam CF; Lin CC; Chen WL; Li CF; Lin YT; Yeh ML
    Osteoarthritis Cartilage; 2013 Oct; 21(10):1613-22. PubMed ID: 23927932
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A pilot study of regenerative therapy by implanting synovium-derived mesenchymal stromal cells in equine osteochondral defect models.
    Yamasaki A; Omura T; Murata D; Kobayashi M; Sunaga T; Kusano K; Ueno Y; Kuramoto T; Hobo S; Misumi K
    J Equine Sci; 2018 Dec; 29(4):117-122. PubMed ID: 30607136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Porous bioactive glass matrix in reconstruction of articular osteochondral defects.
    Ylänen HO; Helminen T; Helminen A; Rantakokko J; Karlsson KH; Aro HT
    Ann Chir Gynaecol; 1999; 88(3):237-45. PubMed ID: 10532567
    [TBL] [Abstract][Full Text] [Related]  

  • 32. NEL-like molecule-1-modified bone marrow mesenchymal stem cells/poly lactic-co-glycolic acid composite improves repair of large osteochondral defects in mandibular condyle.
    Zhu S; Zhang B; Man C; Ma Y; Hu J
    Osteoarthritis Cartilage; 2011 Jun; 19(6):743-50. PubMed ID: 21362490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Preparation of a biphase composite scaffold and its application in tissue engineering for femoral osteochondral defects in rabbits.
    Ruan SQ; Yan L; Deng J; Huang WL; Jiang DM
    Int Orthop; 2017 Sep; 41(9):1899-1908. PubMed ID: 28616703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regeneration of hyaline cartilage promoted by xenogeneic mesenchymal stromal cells embedded within elastin-like recombinamer-based bioactive hydrogels.
    Pescador D; Ibáñez-Fonseca A; Sánchez-Guijo F; Briñón JG; Arias FJ; Muntión S; Hernández C; Girotti A; Alonso M; Del Cañizo MC; Rodríguez-Cabello JC; Blanco JF
    J Mater Sci Mater Med; 2017 Aug; 28(8):115. PubMed ID: 28647792
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adipose-derived mesenchymal stem cells for cartilage tissue engineering: state-of-the-art in in vivo studies.
    Veronesi F; Maglio M; Tschon M; Aldini NN; Fini M
    J Biomed Mater Res A; 2014 Jul; 102(7):2448-66. PubMed ID: 23894033
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Repair of articular cartilage defects with "two-phase" tissue engineered cartilage constructed by autologous marrow mesenchymal stem cells and "two-phase" allogeneic bone matrix gelatin].
    Yin Z; Zhang L; Wang J
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2005 Aug; 19(8):652-7. PubMed ID: 16130396
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Clinical feasibility of a novel biphasic osteochondral composite for matrix-associated autologous chondrocyte implantation.
    Chiang H; Liao CJ; Hsieh CH; Shen CY; Huang YY; Jiang CC
    Osteoarthritis Cartilage; 2013 Apr; 21(4):589-98. PubMed ID: 23333470
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Xenoimplantation of an extracellular-matrix-derived, biphasic, cell-scaffold construct for repairing a large femoral-head high-load-bearing osteochondral defect in a canine model.
    Qiang Y; Yanhong Z; Jiang P; Shibi L; Quanyi G; Xinlong M; Qun X; Baoshan X; Bin Z; Aiyuan W; Li Z; Wengjing X; Chao Z
    ScientificWorldJournal; 2014; 2014():127084. PubMed ID: 24737955
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved cartilage regeneration by implantation of acellular biomaterials after bone marrow stimulation: a systematic review and meta-analysis of animal studies.
    Pot MW; Gonzales VK; Buma P; IntHout J; van Kuppevelt TH; de Vries RBM; Daamen WF
    PeerJ; 2016; 4():e2243. PubMed ID: 27651981
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model.
    Luo Z; Jiang L; Xu Y; Li H; Xu W; Wu S; Wang Y; Tang Z; Lv Y; Yang L
    Biomaterials; 2015 Jun; 52():463-75. PubMed ID: 25818452
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.