These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 30603542)

  • 1.
    Fan J; Yu MY; Lei TD; Wang YH; Cao FY; Qin X; Liu Y
    Tissue Eng Regen Med; 2018 Apr; 15(2):145-154. PubMed ID: 30603542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydroxypropylmethyl cellulose (HPMC) crosslinked keratin/hydroxyapatite (HA) scaffold fabrication, characterization and
    Feroz S; Dias G
    Heliyon; 2021 Nov; 7(11):e08294. PubMed ID: 34765797
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties.
    Kane RJ; Weiss-Bilka HE; Meagher MJ; Liu Y; Gargac JA; Niebur GL; Wagner DR; Roeder RK
    Acta Biomater; 2015 Apr; 17():16-25. PubMed ID: 25644451
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of keratin-chitosan-gelatin composite scaffold for soft tissue engineering.
    Kakkar P; Verma S; Manjubala I; Madhan B
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():343-7. PubMed ID: 25491838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved mechanical properties of hydroxyapatite whisker-reinforced poly(L-lactic acid) scaffold by surface modification of hydroxyapatite.
    Fang Z; Feng Q
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():190-4. PubMed ID: 24411368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration--A comparative study.
    Przekora A; Palka K; Ginalska G
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():891-9. PubMed ID: 26478384
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds.
    Xie L; Yu H; Yang W; Zhu Z; Yue L
    J Biomater Sci Polym Ed; 2016; 27(6):505-28. PubMed ID: 26873015
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High strength yttria-reinforced HA scaffolds fabricated via honeycomb ceramic extrusion.
    Elbadawi M; Shbeh M
    J Mech Behav Biomed Mater; 2018 Jan; 77():422-433. PubMed ID: 29024894
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical properties of hydroxyapatite whisker reinforced polyetherketoneketone composite scaffolds.
    Converse GL; Conrad TL; Roeder RK
    J Mech Behav Biomed Mater; 2009 Dec; 2(6):627-35. PubMed ID: 19716108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of mechanical property and bioactivity of nano-bioglass 45S5 scaffold coated with poly-3-hydroxybutyrate.
    Montazeri M; Karbasi S; Foroughi MR; Monshi A; Ebrahimi-Kahrizsangi R
    J Mater Sci Mater Med; 2015 Feb; 26(2):62. PubMed ID: 25631260
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of hydroxyapatite reinforcement on the architecture and mechanical properties of freeze-dried collagen scaffolds.
    Kane RJ; Roeder RK
    J Mech Behav Biomed Mater; 2012 Mar; 7():41-9. PubMed ID: 22340683
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Keratin-hydroxyapatite composites: biocompatibility, osseointegration, and physical properties in an ovine model.
    Dias GJ; Mahoney P; Swain M; Kelly RJ; Smith RA; Ali MA
    J Biomed Mater Res A; 2010 Dec; 95(4):1084-95. PubMed ID: 20878901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel calcified gum Arabic porous nano-composite scaffold for bone tissue regeneration.
    Hadavi M; Hasannia S; Faghihi S; Mashayekhi F; Zadeh HH; Mostofi SB
    Biochem Biophys Res Commun; 2017 Jul; 488(4):671-678. PubMed ID: 28302485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical study of polycaprolactone-hydroxyapatite porous scaffolds created by porogen-based solid freeform fabrication method.
    Lu L; Zhang Q; Wootton DM; Chiou R; Li D; Lu B; Lelkes PI; Zhou J
    J Appl Biomater Funct Mater; 2014 Dec; 12(3):145-54. PubMed ID: 24425377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transparent biocompatible wool keratin film prepared by mechanical compression of porous keratin hydrogel.
    Mori H; Hara M
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():19-25. PubMed ID: 30033245
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering].
    Wang X; Liu L; Zhang Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomimetic, Osteoconductive Non-mulberry Silk Fiber Reinforced Tricomposite Scaffolds for Bone Tissue Engineering.
    Gupta P; Adhikary M; M JC; Kumar M; Bhardwaj N; Mandal BB
    ACS Appl Mater Interfaces; 2016 Nov; 8(45):30797-30810. PubMed ID: 27783501
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrospun polyurethane/hydroxyapatite bioactive scaffolds for bone tissue engineering: the role of solvent and hydroxyapatite particles.
    Tetteh G; Khan AS; Delaine-Smith RM; Reilly GC; Rehman IU
    J Mech Behav Biomed Mater; 2014 Nov; 39():95-110. PubMed ID: 25117379
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human Hair Keratin Composite Scaffold: Characterisation and Biocompatibility Study on NIH 3T3 Fibroblast Cells.
    Mohamed JMM; Alqahtani A; Al Fatease A; Alqahtani T; Khan BA; Ashmitha B; Vijaya R
    Pharmaceuticals (Basel); 2021 Aug; 14(8):. PubMed ID: 34451878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication and characterization of a novel crosslinked human keratin-alginate sponge.
    Hartrianti P; Nguyen LTH; Johanes J; Chou SM; Zhu P; Tan NS; Tang MBY; Ng KW
    J Tissue Eng Regen Med; 2017 Sep; 11(9):2590-2602. PubMed ID: 27109145
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.