These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 30603565)

  • 21. 3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications.
    Vyas C; Zhang J; Øvrebø Ø; Huang B; Roberts I; Setty M; Allardyce B; Haugen H; Rajkhowa R; Bartolo P
    Mater Sci Eng C Mater Biol Appl; 2021 Jan; 118():111433. PubMed ID: 33255027
    [TBL] [Abstract][Full Text] [Related]  

  • 22. 3D-printed poly(Ɛ-caprolactone) scaffold with gradient mechanical properties according to force distribution in the mandible for mandibular bone tissue engineering.
    Zamani Y; Amoabediny G; Mohammadi J; Seddiqi H; Helder MN; Zandieh-Doulabi B; Klein-Nulend J; Koolstra JH
    J Mech Behav Biomed Mater; 2020 Apr; 104():103638. PubMed ID: 32174396
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Study on the preparation of polycaprolactone/type
    Shen S; Chen M; Gao S; Guo W; Wang Z; Li H; Li X; Zhang B; Xian H; Zhang X; Liu S; Hao L; Zhuo N; Guo Q
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Sep; 32(9):1205-1210. PubMed ID: 30129332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication of 3D Printed Poly(lactic acid)/Polycaprolactone Scaffolds Using TGF-β1 for Promoting Bone Regeneration.
    Cheng CH; Shie MY; Lai YH; Foo NP; Lee MJ; Yao CH
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Impact of Processing Parameters on the Quality of Pharmaceutical Solid Dosage Forms Produced by Fused Deposition Modeling (FDM).
    Alhijjaj M; Nasereddin J; Belton P; Qi S
    Pharmaceutics; 2019 Nov; 11(12):. PubMed ID: 31783633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of scaffold design on 3D printed cell constructs.
    Souness A; Zamboni F; Walker GM; Collins MN
    J Biomed Mater Res B Appl Biomater; 2018 Feb; 106(2):533-545. PubMed ID: 28194931
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of layer thickness and printing orientation on mechanical properties and dimensional accuracy of 3D printed porous samples for bone tissue engineering.
    Farzadi A; Solati-Hashjin M; Asadi-Eydivand M; Abu Osman NA
    PLoS One; 2014; 9(9):e108252. PubMed ID: 25233468
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of immediate release 3D-printed dosage forms for a poorly water-soluble drug by fused deposition modeling: Study of morphology, solid state and dissolution.
    Fanous M; Bitar M; Gold S; Sobczuk A; Hirsch S; Ogorka J; Imanidis G
    Int J Pharm; 2021 Apr; 599():120417. PubMed ID: 33647418
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rapid development of dual porous poly(lactic acid) foam using fused deposition modeling (FDM) 3D printing for medical scaffold application.
    Choi WJ; Hwang KS; Kwon HJ; Lee C; Kim CH; Kim TH; Heo SW; Kim JH; Lee JY
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110693. PubMed ID: 32204007
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.
    Goyanes A; Det-Amornrat U; Wang J; Basit AW; Gaisford S
    J Control Release; 2016 Jul; 234():41-8. PubMed ID: 27189134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Surface modification of 3D-printed porous scaffolds via mussel-inspired polydopamine and effective immobilization of rhBMP-2 to promote osteogenic differentiation for bone tissue engineering.
    Lee SJ; Lee D; Yoon TR; Kim HK; Jo HH; Park JS; Lee JH; Kim WD; Kwon IK; Park SA
    Acta Biomater; 2016 Aug; 40():182-191. PubMed ID: 26868173
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fiber Thickness and Porosity Control in a Biopolymer Scaffold 3D Printed through a Converted Commercial FDM Device.
    Lovecchio J; Cortesi M; Zani M; Govoni M; Dallari D; Giordano E
    Materials (Basel); 2022 Mar; 15(7):. PubMed ID: 35407727
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Assessment of the morphology and dimensional accuracy of 3D printed PLA and PLA/HAp scaffolds.
    Gendviliene I; Simoliunas E; Rekstyte S; Malinauskas M; Zaleckas L; Jegelevicius D; Bukelskiene V; Rutkunas V
    J Mech Behav Biomed Mater; 2020 Apr; 104():103616. PubMed ID: 31929097
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Selection of the optimum 3D-printed pore and the surface modification techniques for tissue engineering tracheal scaffold in vivo reconstruction.
    Pan S; Zhong Y; Shan Y; Liu X; Xiao Y; Shi H
    J Biomed Mater Res A; 2019 Feb; 107(2):360-370. PubMed ID: 30485676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tissue-engineered trachea from a 3D-printed scaffold enhances whole-segment tracheal repair in a goat model.
    Xia D; Jin D; Wang Q; Gao M; Zhang J; Zhang H; Bai J; Feng B; Chen M; Huang Y; Zhong Y; Witman N; Wang W; Xu Z; Zhang H; Yin M; Fu W
    J Tissue Eng Regen Med; 2019 Apr; 13(4):694-703. PubMed ID: 30793848
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Improvement of mechanical strength and osteogenic potential of calcium sulfate-based hydroxyapatite 3-dimensional printed scaffolds by ε-polycarbonate coating.
    Kim BS; Yang SS; Park H; Lee SH; Cho YS; Lee J
    J Biomater Sci Polym Ed; 2017 Sep; 28(13):1256-1270. PubMed ID: 28598722
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of biomechanical behavior of 3D printed mandibular graft with porous scaffold structure designed by topological optimization.
    Hu J; Wang JH; Wang R; Yu XB; Liu Y; Baur DA
    3D Print Med; 2019 Mar; 5(1):5. PubMed ID: 30874929
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Bridging the gap: Using 3D printed polycaprolactone implants to reconstruct circumferential tracheal defects in rabbits.
    Chan DS; Gabra N; Baig A; Manoukian JJ; Daniel SJ
    Laryngoscope; 2020 Dec; 130(12):E767-E772. PubMed ID: 31872882
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique.
    Jung JW; Lee H; Hong JM; Park JH; Shim JH; Choi TH; Cho DW
    Biofabrication; 2015 Nov; 7(4):045003. PubMed ID: 26525821
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A two-stage in vivo approach for implanting a 3D printed tissue-engineered tracheal replacement graft: A proof of concept.
    Frejo L; Goldstein T; Swami P; Patel NA; Grande DA; Zeltsman D; Smith LP
    Int J Pediatr Otorhinolaryngol; 2022 Apr; 155():111066. PubMed ID: 35189447
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.