These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 30603994)

  • 1. Derivation of a bacterial nutrient-taxis system with doubly degenerate cross-diffusion as the parabolic limit of a velocity-jump process.
    Plaza RG
    J Math Biol; 2019 May; 78(6):1681-1711. PubMed ID: 30603994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Traveling wave solutions from microscopic to macroscopic chemotaxis models.
    Lui R; Wang ZA
    J Math Biol; 2010 Nov; 61(5):739-61. PubMed ID: 20037760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early and late stage profiles for a chemotaxis model with density-dependent jump probability.
    Xu T; Ji S; Jin C; Mei M; Yin J
    Math Biosci Eng; 2018 Dec; 15(6):1345-1385. PubMed ID: 30418789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A control problem for a cross-diffusion system in a nonhomogeneous medium.
    Marinoschi G
    J Biol Dyn; 2013; 7 Suppl 1(Suppl 1):88-107. PubMed ID: 24047286
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competitive exclusion in a two-species chemotaxis model.
    Stinner C; Tello JI; Winkler M
    J Math Biol; 2014 Jun; 68(7):1607-26. PubMed ID: 23636562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrodynamics of bacterial colonies: a model.
    Lega J; Passot T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 1):031906. PubMed ID: 12689100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. From Birds to Bacteria: Generalised Velocity Jump Processes with Resting States.
    Taylor-King JP; van Loon EE; Rosser G; Chapman SJ
    Bull Math Biol; 2015 Jul; 77(7):1213-36. PubMed ID: 26060098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Derivation of the bacterial run-and-tumble kinetic equation from a model with biochemical pathway.
    Perthame B; Tang M; Vauchelet N
    J Math Biol; 2016 Nov; 73(5):1161-1178. PubMed ID: 26993136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Randomly curved runs interrupted by tumbling: a model for bacterial motion.
    Condat CA; Jäckle J; Menchón SA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021909. PubMed ID: 16196606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial chemotaxis without gradient-sensing.
    Yoon C; Kim YJ
    J Math Biol; 2015 May; 70(6):1359-80. PubMed ID: 24865467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multiple-relaxation-time lattice-boltzmann model for bacterial chemotaxis: effects of initial concentration, diffusion, and hydrodynamic dispersion on traveling bacterial bands.
    Yan Z; Hilpert M
    Bull Math Biol; 2014 Oct; 76(10):2449-75. PubMed ID: 25223537
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Derivation of hyperbolic models for chemosensitive movement.
    Filbet F; Laurençot P; Perthame B
    J Math Biol; 2005 Feb; 50(2):189-207. PubMed ID: 15480673
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-similar dynamics of bacterial chemotaxis.
    Ngamsaad W; Khompurngson K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):062901. PubMed ID: 23367993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell balance equation for chemotactic bacteria with a biphasic tumbling frequency.
    Chen KC; Ford RM; Cummings PT
    J Math Biol; 2003 Dec; 47(6):518-46. PubMed ID: 14618378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemotaxis when bacteria remember: drift versus diffusion.
    Chatterjee S; da Silveira RA; Kafri Y
    PLoS Comput Biol; 2011 Dec; 7(12):e1002283. PubMed ID: 22144882
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of internal dynamics on chemotactic aggregation of bacteria.
    Yasuda S
    Phys Biol; 2021 Sep; 18(6):. PubMed ID: 34425564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Real-time nonlinear feedback control of pattern formation in (bio)chemical reaction-diffusion processes: a model study.
    Brandt-Pollmann U; Lebiedz D; Diehl M; Sager S; Schlöder J
    Chaos; 2005 Sep; 15(3):33901. PubMed ID: 16252992
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of cell signaling.
    Xue C
    J Math Biol; 2015 Jan; 70(1-2):1-44. PubMed ID: 24366373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A traveling-wave solution for bacterial chemotaxis with growth.
    Narla AV; Cremer J; Hwa T
    Proc Natl Acad Sci U S A; 2021 Nov; 118(48):. PubMed ID: 34819366
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Diffusion Approximation Based on Renewal Processes with Applications to Strongly Biased Run-Tumble Motion.
    Thygesen UH
    Bull Math Biol; 2016 Mar; 78(3):556-79. PubMed ID: 27012850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.