These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 30604245)
1. Elevated gibberellin enhances lignin accumulation in celery (Apium graveolens L.) leaves. Duan AQ; Feng K; Wang GL; Liu JX; Xu ZS; Xiong AS Protoplasma; 2019 May; 256(3):777-788. PubMed ID: 30604245 [TBL] [Abstract][Full Text] [Related]
2. Elevated gibberellin altered morphology, anatomical structure, and transcriptional regulatory networks of hormones in celery leaves. Duan AQ; Feng K; Liu JX; Que F; Xu ZS; Xiong AS Protoplasma; 2019 Nov; 256(6):1507-1517. PubMed ID: 31168667 [TBL] [Abstract][Full Text] [Related]
3. Elevated CO Liu JX; Feng K; Wang GL; Xu ZS; Wang F; Xiong AS Plant Physiol Biochem; 2018 Jun; 127():310-319. PubMed ID: 29653434 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome profiling reveals the association of multiple genes and pathways contributing to hormonal control in celery leaves. Liu J; Feng K; Hou X; Li H; Wang G; Xu Z; Xiong A Acta Biochim Biophys Sin (Shanghai); 2019 May; 51(5):524-534. PubMed ID: 30939194 [TBL] [Abstract][Full Text] [Related]
5. De novo assembly, transcriptome characterization, lignin accumulation, and anatomic characteristics: novel insights into lignin biosynthesis during celery leaf development. Jia XL; Wang GL; Xiong F; Yu XR; Xu ZS; Wang F; Xiong AS Sci Rep; 2015 Feb; 5():8259. PubMed ID: 25651889 [TBL] [Abstract][Full Text] [Related]
6. Exogenous gibberellin enhances secondary xylem development and lignification in carrot taproot. Wang GL; Que F; Xu ZS; Wang F; Xiong AS Protoplasma; 2017 Mar; 254(2):839-848. PubMed ID: 27335006 [TBL] [Abstract][Full Text] [Related]
7. Genome-wide analysis of NAC transcription factors and their response to abiotic stress in celery (Apium graveolens L.). Duan AQ; Yang XL; Feng K; Liu JX; Xu ZS; Xiong AS Comput Biol Chem; 2020 Feb; 84():107186. PubMed ID: 31809981 [TBL] [Abstract][Full Text] [Related]
8. Isolation and characterization of the Agvip1 gene and response to abiotic and metal ions stresses in three celery cultivars. Li Y; Chen YY; Wang F; Xu ZS; Jiang Q; Xiong AS Mol Biol Rep; 2014 Sep; 41(9):6003-11. PubMed ID: 24969482 [TBL] [Abstract][Full Text] [Related]
9. Comparative Transcriptome Analysis of Celery Leaf Blades Identified an R2R3-MYB Transcription Factor that Regulates Apigenin Metabolism. Yan J; Yu L; He L; Zhu L; Xu S; Wan Y; Wang H; Wang Y; Zhu W J Agric Food Chem; 2019 May; 67(18):5265-5277. PubMed ID: 30969771 [TBL] [Abstract][Full Text] [Related]
10. Transcriptional profiling of genes involved in ascorbic acid biosynthesis, recycling, and degradation during three leaf developmental stages in celery. Huang W; Wang GL; Li H; Wang F; Xu ZS; Xiong AS Mol Genet Genomics; 2016 Dec; 291(6):2131-2143. PubMed ID: 27604234 [TBL] [Abstract][Full Text] [Related]
11. Transcriptome profiling of β-carotene biosynthesis genes and β-carotene accumulation in leaf blades and petioles of celery cv. Jinnanshiqin. Li JW; Ma J; Feng K; Xu ZS; Xiong AS Acta Biochim Biophys Sin (Shanghai); 2019 Jan; 51(1):116-119. PubMed ID: 30508041 [No Abstract] [Full Text] [Related]
12. Combined Analysis of the Metabolome and Transcriptome to Explore Heat Stress Responses and Adaptation Mechanisms in Celery ( Li M; Li J; Zhang R; Lin Y; Xiong A; Tan G; Luo Y; Zhang Y; Chen Q; Wang Y; Zhang Y; Wang X; Tang H Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328788 [TBL] [Abstract][Full Text] [Related]
14. Molecular mechanisms and hormonal regulation underpinning morphological dormancy: a case study using Apium graveolens (Apiaceae). Walker M; Pérez M; Steinbrecher T; Gawthrop F; Pavlović I; Novák O; Tarkowská D; Strnad M; Marone F; Nakabayashi K; Leubner-Metzger G Plant J; 2021 Nov; 108(4):1020-1036. PubMed ID: 34510583 [TBL] [Abstract][Full Text] [Related]
15. Complete Mitochondrial Genome Sequence and Identification of a Candidate Gene Responsible for Cytoplasmic Male Sterility in Celery ( Cheng Q; Wang P; Li T; Liu J; Zhang Y; Wang Y; Sun L; Shen H Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445290 [TBL] [Abstract][Full Text] [Related]
16. Mapping of the AgWp1 gene for the white petiole in celery (Apium graveolens L.). Cheng Q; He Y; Lu Q; Wang H; Liu S; Liu J; Liu M; Zhang Y; Wang Y; Sun L; Shen H Plant Sci; 2023 Feb; 327():111563. PubMed ID: 36509245 [TBL] [Abstract][Full Text] [Related]
17. The Accumulation of Lutein and β-Carotene and Transcript Profiling of Genes Related to Carotenoids Biosynthesis in Yellow Celery. Ding X; Jia LL; Xing GM; Tao JP; Sun S; Tan GF; Li S; Liu JX; Duan AQ; Wang H; Xiong AS Mol Biotechnol; 2021 Jul; 63(7):638-649. PubMed ID: 33973142 [TBL] [Abstract][Full Text] [Related]
18. Isolation, purification, and characterization of AgUCGalT1, a galactosyltransferase involved in anthocyanin galactosylation in purple celery (Apium graveolens L.). Feng K; Xu ZS; Liu JX; Li JW; Wang F; Xiong AS Planta; 2018 Jun; 247(6):1363-1375. PubMed ID: 29520459 [TBL] [Abstract][Full Text] [Related]
19. Comparative Physiological and Transcriptomic Analyses of Improved Heat Stress Tolerance in Celery ( Li M; Zhou J; Du J; Li X; Sun Y; Wang Z; Lin Y; Zhang Y; Wang Y; He W; Wang X; Chen Q; Zhang Y; Luo Y; Tang H Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232683 [TBL] [Abstract][Full Text] [Related]
20. Uptake and phytotoxicity of anthracene and benzo[k]fluoranthene applied to the leaves of celery plants (Apium graveolens var. secalinum L.). Wieczorek J; Sienkiewicz S; Pietrzak M; Wieczorek Z Ecotoxicol Environ Saf; 2015 May; 115():19-25. PubMed ID: 25666733 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]