These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 30604245)
21. Characterization of Volatile Organic Compounds in Five Celery ( Sun Y; Li M; Li X; Du J; Li W; Lin Y; Zhang Y; Wang Y; He W; Chen Q; Zhang Y; Wang X; Luo Y; Xiong A; Tang H Int J Mol Sci; 2023 Aug; 24(17):. PubMed ID: 37686147 [TBL] [Abstract][Full Text] [Related]
22. High throughput sequencing of two celery varieties small RNAs identifies microRNAs involved in temperature stress response. Li MY; Wang F; Xu ZS; Jiang Q; Ma J; Tan GF; Xiong AS BMC Genomics; 2014 Mar; 15():242. PubMed ID: 24673837 [TBL] [Abstract][Full Text] [Related]
23. Comparative metabolomics provides novel insights into the basis of petiole color differences in celery ( Li M; Li J; Tan H; Luo Y; Zhang Y; Chen Q; Wang Y; Lin Y; Zhang Y; Wang X; Tang H J Zhejiang Univ Sci B; 2022 Apr; 23(4):300-314. PubMed ID: 35403385 [TBL] [Abstract][Full Text] [Related]
24. AgMYB12, a novel R2R3-MYB transcription factor, regulates apigenin biosynthesis by interacting with the AgFNS gene in celery. Wang H; Liu JX; Feng K; Li T; Duan AQ; Liu YH; Liu H; Xiong AS Plant Cell Rep; 2022 Jan; 41(1):139-151. PubMed ID: 34601645 [TBL] [Abstract][Full Text] [Related]
25. Identification of SSRs and differentially expressed genes in two cultivars of celery (Apium graveolens L.) by deep transcriptome sequencing. Li MY; Wang F; Jiang Q; Ma J; Xiong AS Hortic Res; 2014; 1():10. PubMed ID: 26504532 [TBL] [Abstract][Full Text] [Related]
26. AgFNS overexpression increase apigenin and decrease anthocyanins in petioles of transgenic celery. Tan GF; Ma J; Zhang XY; Xu ZS; Xiong AS Plant Sci; 2017 Oct; 263():31-38. PubMed ID: 28818381 [TBL] [Abstract][Full Text] [Related]
27. Impact of altered gibberellin metabolism on biomass accumulation, lignin biosynthesis, and photosynthesis in transgenic tobacco plants. Biemelt S; Tschiersch H; Sonnewald U Plant Physiol; 2004 May; 135(1):254-65. PubMed ID: 15122040 [TBL] [Abstract][Full Text] [Related]
28. Quality characterization of celery (Apium graveolens L.) by plant zones and two harvest dates. Guerra N; Carrozzi L; Goñi MG; Roura S; Yommi A J Food Sci; 2010 Aug; 75(6):S327-32. PubMed ID: 20722956 [TBL] [Abstract][Full Text] [Related]
29. Phytochemical and biological characterization of Italian "sedano bianco di Sperlonga" Protected Geographical Indication celery ecotype: A multimethodological approach. Ingallina C; Capitani D; Mannina L; Carradori S; Locatelli M; Di Sotto A; Di Giacomo S; Toniolo C; Pasqua G; Valletta A; Simonetti G; Parroni A; Beccaccioli M; Vinci G; Rapa M; Giusti AM; Fraschetti C; Filippi A; Maccelli A; Crestoni ME; Fornarini S; Sobolev AP Food Chem; 2020 Mar; 309():125649. PubMed ID: 31718835 [TBL] [Abstract][Full Text] [Related]
30. Morphological characteristics, anatomical structure, and dynamic change of ascorbic acid under different storage conditions of celery. Jia M; Zhu SQ; Wang YH; Liu JX; Tan SS; Liu H; Shu S; Tao JP; Xiong AS Protoplasma; 2023 Jan; 260(1):21-33. PubMed ID: 35396652 [TBL] [Abstract][Full Text] [Related]
31. CeleryDB: a genomic database for celery. Feng K; Hou XL; Li MY; Jiang Q; Xu ZS; Liu JX; Xiong AS Database (Oxford); 2018 Jan; 2018():. PubMed ID: 29992323 [TBL] [Abstract][Full Text] [Related]
32. Use of EST-SSR markers for evaluating genetic diversity and fingerprinting celery (Apium graveolens L.) cultivars. Fu N; Wang PY; Liu XD; Shen HL Molecules; 2014 Feb; 19(2):1939-55. PubMed ID: 24518809 [TBL] [Abstract][Full Text] [Related]
33. Comparison of Mineral Composition in Microgreens and Mature leaves of Celery (Apium graveolens L.). Singh M; Nara U; Rani N; Pathak D; Kaur K; Sangha MK Biol Trace Elem Res; 2023 Aug; 201(8):4156-4166. PubMed ID: 36447002 [TBL] [Abstract][Full Text] [Related]
34. Liu YH; Wang H; Liu JX; Shu S; Tan GF; Li MY; Duan AQ; Liu H; Xiong AS PeerJ; 2022; 10():e12976. PubMed ID: 35233296 [TBL] [Abstract][Full Text] [Related]
35. Macro-, micro-, and heavy metal element levels in different parts of celery (Apium graveolens L.) plant. Özcan MM; Kulluk DA; Yılmaz FG; Dursun N Environ Monit Assess; 2023 Apr; 195(5):550. PubMed ID: 37032371 [TBL] [Abstract][Full Text] [Related]
36. A Review of the Antioxidant Activity of Celery ( Apium graveolens L). Kooti W; Daraei N J Evid Based Complementary Altern Med; 2017 Oct; 22(4):1029-1034. PubMed ID: 28701046 [TBL] [Abstract][Full Text] [Related]
37. Lau H; Laserna AKC; Li SFY Food Chem; 2020 Dec; 332():127424. PubMed ID: 32619947 [TBL] [Abstract][Full Text] [Related]
38. Bioaccumulation and translocation of cadmium in cole (Brassica campestris L.) and celery (Apium graveolens) grown in the polluted oasis soil, Northwest of China. Yang Y; Nan Z; Zhao Z; Wang Z; Wang S; Wang X; Jin W; Zhao C J Environ Sci (China); 2011; 23(8):1368-74. PubMed ID: 22128545 [TBL] [Abstract][Full Text] [Related]
39. Transcriptional and Metabolic Characterization of Feeding Ramie Growth Enhanced by a Combined Application of Gibberellin and Ethrel. Jie H; Ma Y; Xie DY; Jie Y Int J Mol Sci; 2022 Oct; 23(19):. PubMed ID: 36233324 [TBL] [Abstract][Full Text] [Related]
40. Involvement of gibberellin in tracheary element differentiation and lignification in Zinnia elegans xylogenic culture. Tokunaga N; Uchimura N; Sato Y Protoplasma; 2006 Sep; 228(4):179-87. PubMed ID: 16983485 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]