BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30604347)

  • 1. Pattern analysis of 532- and 1064-nm microlens array-type, picosecond-domain laser-induced tissue reactions in ex vivo human skin.
    Chung HJ; Lee HC; Park J; Childs J; Hong J; Kim H; Cho SB
    Lasers Med Sci; 2019 Aug; 34(6):1207-1215. PubMed ID: 30604347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactive tissue reactions of 1064-nm focused picosecond-domain laser and dermal cohesive polydensified matrix hyaluronic acid treatment in in vivo rat skin.
    Kim HK; Kim HJ; Hong JY; Park J; Lee HC; Lyu H; Cho SB
    Skin Res Technol; 2020 Sep; 26(5):683-689. PubMed ID: 32180275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pattern analysis of 532- and 1,064-nm picosecond-domain laser-induced immediate tissue reactions in ex vivo pigmented micropig skin.
    Lee HC; Childs J; Chung HJ; Park J; Hong J; Cho SB
    Sci Rep; 2019 Mar; 9(1):4186. PubMed ID: 30862808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wound Healing Profile After 1064- and 532-nm Picosecond Lasers With Microlens Array of In Vivo Human Skin.
    O Connor K; Cho SB; Chung HJ
    Lasers Surg Med; 2021 Oct; 53(8):1059-1064. PubMed ID: 33644902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histological Characteristics of Skin Treated With a Fractionated 1064-nm Nd: YAG Picosecond Laser With Holographic Optics.
    Zhang M; Guan Y; Huang Y; Zhang E; Lin T; Wu Q
    Lasers Surg Med; 2021 Oct; 53(8):1073-1079. PubMed ID: 33565087
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microlesion healing dynamics in in vivo porcine skin after treatment with 1064 nm picosecond-domain Nd:YAG laser.
    Baleisis J; Rudys R
    J Biophotonics; 2023 Apr; 16(4):e202200349. PubMed ID: 36606608
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sequential delivery of long-pulsed 755-nm alexandrite laser and long-pulsed 1,064-nm neodymium:yttrium-aluminum-garnet laser treatment for pigmented disorders.
    Cho SB; Ahn KJ; Oh D; Kim H; Yoo KH
    Skin Res Technol; 2019 Sep; 25(5):683-692. PubMed ID: 31056804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Picosecond-Domain Fractional Laser Treatment Over Hyaluronic Acid Fillers: In Vivo and Clinical Studies.
    Kim JE; Hong JY; Lee HJ; Lee SY; Kim HJ
    Lasers Surg Med; 2020 Dec; 52(10):928-934. PubMed ID: 32350899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A comparative study with a 755 nm picosecond Alexandrite laser with a diffractive lens array and a 532 nm/1064 nm Nd:YAG with a holographic optic.
    Tanghetti Md E; Jennings J
    Lasers Surg Med; 2018 Jan; 50(1):37-44. PubMed ID: 29111604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histology of ex vivo skin after treatment with fractionated picosecond Nd:YAG laser in high and low-energy settings.
    Yeh YT; Peng JH; Peng P
    J Cosmet Laser Ther; 2020; 22(1):43-47. PubMed ID: 31900067
    [No Abstract]   [Full Text] [Related]  

  • 11. Characterization of picosecond laser-induced optical breakdown using harmonic generation microscopy.
    Liu C; Wu PJ; Chia SH; Sun CK; Liao YH
    Lasers Surg Med; 2023 Aug; 55(6):561-567. PubMed ID: 37051896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Histological evaluation of dermal tissue remodeling with the 1444-nm neodymium:yttrium-aluminum-garnet laser in in vivo model.
    Kim JH; Min KH; Heo CY; Baek RM; Park HJ; Youn SW; Kim EH
    J Dermatol; 2013 Sep; 40(9):706-10. PubMed ID: 23834723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of laser-induced optical breakdown on skin type during 1064 nm picosecond laser treatment.
    Kim H; Hwang JK; Choi J; Kang HW
    J Biophotonics; 2021 Sep; 14(9):e202100129. PubMed ID: 34114344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficacy and safety of a novel 785 nm picosecond neodymium-doped yttrium aluminum garnet laser for the treatment of facial benign pigmented lesions in Asian skin: a pilot study.
    Hong JY; Shin SH; Koh YG; Seok J; Park KY
    J Dermatolog Treat; 2024 Dec; 35(1):2293640. PubMed ID: 38108131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combination of Dual Wavelength Picosecond and Nanosecond Pulse Width Neodymium-Doped Yttrium-Aluminum-Garnet Lasers for Tattoo Removal.
    Kato H; Doi K; Kanayama K; Araki J; Nakatsukasa S; Chi D; Mori M; Fuse Y; Sakae Y; Uozumi T
    Lasers Surg Med; 2020 Jul; 52(6):515-522. PubMed ID: 31729066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of responses of tattoos to picosecond and nanosecond Q-switched neodymium: YAG lasers.
    Ross V; Naseef G; Lin G; Kelly M; Michaud N; Flotte TJ; Raythen J; Anderson RR
    Arch Dermatol; 1998 Feb; 134(2):167-71. PubMed ID: 9487208
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pattern analysis of laser-tattoo interactions for picosecond- and nanosecond-domain 1,064-nm neodymium-doped yttrium-aluminum-garnet lasers in tissue-mimicking phantom.
    Ahn KJ; Zheng Z; Kwon TR; Kim BJ; Lee HS; Cho SB
    Sci Rep; 2017 May; 7(1):1533. PubMed ID: 28484226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Delivery of light to the skin through ablated conduits.
    Tanghetti E; Mirkov M; Sierra RA
    Lasers Surg Med; 2017 Jan; 49(1):69-77. PubMed ID: 27197620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Q-switched 1064-nm dymium-doped yttrium aluminum garnet laser irradiation induces skin collagen synthesis by stimulating MAPKs pathway.
    Yang Z; Xiang H; Duan X; Liu J; He X; He Y; Hu S; He L
    Lasers Med Sci; 2019 Jul; 34(5):963-971. PubMed ID: 30448939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A preclinical study testing "Focused multiple laser beams," a new concept of irradiation with the 1064-nm Nd:YAG laser for skin rejuvenation.
    Horiguchi M; Miyata N; Mizuno H
    J Cosmet Laser Ther; 2017 Apr; 19(2):76-82. PubMed ID: 27834498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.