These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 3060457)

  • 41. dfrA20, A novel trimethoprim resistance gene from Pasteurella multocida.
    Kehrenberg C; Schwarz S
    Antimicrob Agents Chemother; 2005 Jan; 49(1):414-7. PubMed ID: 15616323
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A new dihydrofolate reductase with low trimethoprim sensitivity induced by an R factor mediating high resistance to trimethoprim.
    Sköld O; Widh A
    J Biol Chem; 1974 Jul; 249(13):4324-5. PubMed ID: 4604016
    [No Abstract]   [Full Text] [Related]  

  • 43. Integron-Associated DfrB4, a Previously Uncharacterized Member of the Trimethoprim-Resistant Dihydrofolate Reductase B Family, Is a Clinically Identified Emergent Source of Antibiotic Resistance.
    Toulouse JL; Edens TJ; Alejaldre L; Manges AR; Pelletier JN
    Antimicrob Agents Chemother; 2017 May; 61(5):. PubMed ID: 28242670
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Increased levels of dihydrofolate reductase in rifampin-resistant mutants of Bacillus subtilis.
    Kane JF; Wainscott VJ; Hurt MA
    J Bacteriol; 1979 Feb; 137(2):1028-30. PubMed ID: 106041
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Trimethoprim resistance in Haemophilus influenzae is due to altered dihydrofolate reductase(s).
    de Groot R; Chaffin DO; Kuehn M; Smith AL
    Biochem J; 1991 Mar; 274 ( Pt 3)(Pt 3):657-62. PubMed ID: 2012595
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Functional cloning of Bacillus anthracis dihydrofolate reductase and confirmation of natural resistance to trimethoprim.
    Barrow EW; Bourne PC; Barrow WW
    Antimicrob Agents Chemother; 2004 Dec; 48(12):4643-9. PubMed ID: 15561838
    [TBL] [Abstract][Full Text] [Related]  

  • 47. First report in Africa of two clinical isolates of Proteus mirabilis carrying Salmonella genomic island (SGI1) variants, SGI1-PmABB and SGI1-W.
    Soliman AM; Ahmed AM; Shimamoto T; El-Domany RA; Nariya H; Shimamoto T
    Infect Genet Evol; 2017 Jul; 51():132-137. PubMed ID: 28359833
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Resistance to trimethoprim in 1978-79 compared with 1973-75.
    Hamilton-Miller JM; Gooding A; Brumfitt W
    J Clin Pathol; 1981 Apr; 34(4):439-42. PubMed ID: 7016927
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Classification of plasmid-encoded dihydrofolate reductases conferring trimethoprim resistance.
    Amyes SG; Towner KJ; Young HK
    J Med Microbiol; 1992 Jan; 36(1):1-3. PubMed ID: 1731055
    [No Abstract]   [Full Text] [Related]  

  • 50. dfrA25, a novel trimethoprim resistance gene from Salmonella Agona isolated from a human urine sample in Brazil.
    Agersø Y; Peirano G; Aarestrup FM
    J Antimicrob Chemother; 2006 Nov; 58(5):1044-7. PubMed ID: 16980698
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of multiply resistant Proteus mirabilis isolates in Hungary.
    Konkoly Thege M; Nikolnikov S
    Acta Microbiol Hung; 1988; 35(4):423-8. PubMed ID: 3072825
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Substrate and inhibitor specificity of Mycobacterium avium dihydrofolate reductase.
    Böck RA; Soulages JL; Barrow WW
    FEBS J; 2007 Jul; 274(13):3286-98. PubMed ID: 17542991
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nucleotide sequence analysis of the trimethoprim resistant dihydrofolate reductase encoded by R plasmid R751.
    Flensburg J; Steen R
    Nucleic Acids Res; 1986 Jul; 14(14):5933. PubMed ID: 3526286
    [No Abstract]   [Full Text] [Related]  

  • 54. Characterization of novel antibiotic resistance genes identified by functional metagenomics on soil samples.
    Torres-Cortés G; Millán V; Ramírez-Saad HC; Nisa-Martínez R; Toro N; Martínez-Abarca F
    Environ Microbiol; 2011 Apr; 13(4):1101-14. PubMed ID: 21281423
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The genetics of bacterial trimethoprim resistance in tropical areas.
    Amyes SG; Young HK
    Trans R Soc Trop Med Hyg; 1987; 81(3):504-7. PubMed ID: 3318025
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Epidemiology of trimethoprim resistance.
    Amyes SG
    J Antimicrob Chemother; 1986 Oct; 18 Suppl C():215-21. PubMed ID: 3542939
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Imipenem resistance in Proteus mirabilis.
    Mehtar S; Tsakris A; Pitt TL
    J Antimicrob Chemother; 1991 Oct; 28(4):612-5. PubMed ID: 1761458
    [No Abstract]   [Full Text] [Related]  

  • 58. The Bacterial Genomic Context of Highly Trimethoprim-Resistant DfrB Dihydrofolate Reductases Highlights an Emerging Threat to Public Health.
    Lemay-St-Denis C; Diwan SS; Pelletier JN
    Antibiotics (Basel); 2021 Apr; 10(4):. PubMed ID: 33924456
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Radioenzymatic assay for trimethoprim in very small serum samples.
    Yogev R; Melick C; Tan-Pong L
    J Clin Microbiol; 1985 Feb; 21(2):249-50. PubMed ID: 3972993
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Discovery of Highly Trimethoprim-Resistant DfrB Dihydrofolate Reductases in Diverse Environmental Settings Suggests an Evolutionary Advantage Unrelated to Antibiotic Resistance.
    Cellier-Goetghebeur S; Lafontaine K; Lemay-St-Denis C; Tsamo P; Bonneau-Burke A; Copp JN; Pelletier JN
    Antibiotics (Basel); 2022 Dec; 11(12):. PubMed ID: 36551425
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.