These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 30604777)

  • 1. Defect engineered bioactive transition metals dichalcogenides quantum dots.
    Ding X; Peng F; Zhou J; Gong W; Slaven G; Loh KP; Lim CT; Leong DT
    Nat Commun; 2019 Jan; 10(1):41. PubMed ID: 30604777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Colloidal Nanostructures of Transition-Metal Dichalcogenides.
    Sun Y; Terrones M; Schaak RE
    Acc Chem Res; 2021 Mar; 54(6):1517-1527. PubMed ID: 33662209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots.
    Zhang X; Lai Z; Liu Z; Tan C; Huang Y; Li B; Zhao M; Xie L; Huang W; Zhang H
    Angew Chem Int Ed Engl; 2015 Apr; 54(18):5425-8. PubMed ID: 25760801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interfacing transition metal dichalcogenides with chromium germanium telluride quantum dots for controllable light-matter interactions.
    Zhang J; Tebyetekerwa M; Nguyen HT
    J Colloid Interface Sci; 2022 Apr; 611():432-440. PubMed ID: 34968962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tunable Conductance of MoS
    Behera RK; Mishra L; Panigrahi A; Sahoo PK; Sarangi MK
    ACS Appl Mater Interfaces; 2022 Feb; 14(4):5750-5761. PubMed ID: 35049294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Zero-Dimensional Quantum Confinement in Transition-Metal Dichalcogenide Heterostructures.
    Price CC; Frey NC; Jariwala D; Shenoy VB
    ACS Nano; 2019 Jul; 13(7):8303-8311. PubMed ID: 31241897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Defect-Rich Molybdenum Sulfide Quantum Dots for Amplified Photoluminescence and Photonics-Driven Reactive Oxygen Species Generation.
    Zhu H; Zan W; Chen W; Jiang W; Ding X; Li BL; Mu Y; Wang L; Garaj S; Leong DT
    Adv Mater; 2022 Aug; 34(31):e2200004. PubMed ID: 35688799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation and Characterization of Chiral Transition-Metal Dichalcogenide Quantum Dots and Their Enantioselective Catalysis.
    Zhang H; He H; Jiang X; Xia Z; Wei W
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30680-30688. PubMed ID: 30113158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of Chalcogen Defect Introducing Metal-Induced Gap States and Its Implications for Metal-TMDs' Interface Chemistry.
    Kumar J; Shrivastava M
    ACS Omega; 2023 Mar; 8(11):10176-10184. PubMed ID: 36969396
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosted electrochemical ammonia synthesis by high-percentage metallic transition metal dichalcogenide quantum dots.
    Zhang J; Ling C; Zang W; Li X; Huang S; Li XL; Yan D; Kou Z; Liu L; Wang J; Yang HY
    Nanoscale; 2020 May; 12(20):10964-10971. PubMed ID: 32419003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 1T-Phase Transition Metal Dichalcogenides (MoS
    Rohaizad N; Mayorga-Martinez CC; Sofer Z; Pumera M
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40697-40706. PubMed ID: 29112361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives.
    Samadi M; Sarikhani N; Zirak M; Zhang H; Zhang HL; Moshfegh AZ
    Nanoscale Horiz; 2018 Mar; 3(2):90-204. PubMed ID: 32254071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile and Scalable Colloidal Synthesis of Transition Metal Dichalcogenide Nanoparticles with High-Performance Hydrogen Production.
    Li J; Wrzesińska-Lashkova A; Deconinck M; Göbel M; Vaynzof Y; Lesnyak V; Eychmüller A
    ACS Appl Mater Interfaces; 2024 Jul; 16(28):36315-36321. PubMed ID: 38968249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Single-Step Electrochemical Synthesis of Luminescent WS
    Valappil MO; Anil A; Shaijumon M; Pillai VK; Alwarappan S
    Chemistry; 2017 Jul; 23(38):9144-9148. PubMed ID: 28463454
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of transition metal dichalcogenides quantum dots based on femtosecond laser ablation.
    Xu Y; Yan L; Li X; Xu H
    Sci Rep; 2019 Feb; 9(1):2931. PubMed ID: 30814552
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrochemistry of transition metal dichalcogenides: strong dependence on the metal-to-chalcogen composition and exfoliation method.
    Eng AY; Ambrosi A; Sofer Z; Šimek P; Pumera M
    ACS Nano; 2014 Dec; 8(12):12185-98. PubMed ID: 25453501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interface-mediated noble metal deposition on transition metal dichalcogenide nanostructures.
    Sun Y; Wang Y; Chen JYC; Fujisawa K; Holder CF; Miller JT; Crespi VH; Terrones M; Schaak RE
    Nat Chem; 2020 Mar; 12(3):284-293. PubMed ID: 32094437
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Edge Epitaxy of Two-Dimensional MoSe
    Chen J; Wu XJ; Gong Y; Zhu Y; Yang Z; Li B; Lu Q; Yu Y; Han S; Zhang Z; Zong Y; Han Y; Gu L; Zhang H
    J Am Chem Soc; 2017 Jun; 139(25):8653-8660. PubMed ID: 28582624
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrathin Two-Dimensional Multinary Layered Metal Chalcogenide Nanomaterials.
    Tan C; Lai Z; Zhang H
    Adv Mater; 2017 Oct; 29(37):. PubMed ID: 28752578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principles simulation of local response in transition metal dichalcogenides under electron irradiation.
    Yoshimura A; Lamparski M; Kharche N; Meunier V
    Nanoscale; 2018 Feb; 10(5):2388-2397. PubMed ID: 29334100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.