These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 30604808)

  • 1. Planar dual-cavity hot-electron photodetectors.
    Shao W; Yang Q; Zhang C; Wu S; Li X
    Nanoscale; 2019 Jan; 11(3):1396-1402. PubMed ID: 30604808
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Five-layer planar hot-electron photodetectors at telecommunication wavelength of 1550 nm.
    Shao W; Hu J; Wang Y
    Opt Express; 2022 Jul; 30(14):25555-25566. PubMed ID: 36237083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Planar microcavity-integrated hot-electron photodetector.
    Zhang C; Wu K; Zhan Y; Giannini V; Li X
    Nanoscale; 2016 May; 8(19):10323-9. PubMed ID: 27128730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Performance Planar Broadband Hot-Electron Photodetection through Platinum-Dielectric Triple Junctions.
    Yang X; Wang Y; Li Y; Cui W; Hu J; Zhou Q; Shao W
    Nanomaterials (Basel); 2024 Sep; 14(19):. PubMed ID: 39404279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Planar hot-electron photodetection with polarity-switchable photocurrents controlled by the working wavelength.
    Shao W; Cui W; Hu J; Wang Y; Tang J; Li X
    Opt Express; 2023 Jul; 31(15):25220-25229. PubMed ID: 37475332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Grating-assisted hot-electron photodetectors for S- and C-band telecommunication.
    Shao W; Cui W; Xin Y; Hu J; Li X
    Nanotechnology; 2024 Apr; 35(27):. PubMed ID: 38522108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultranarrow-bandwidth planar hot electron photodetector based on coupled dual Tamm plasmons.
    Liang W; Xiao Z; Xu H; Deng H; Li H; Chen W; Liu Z; Long Y
    Opt Express; 2020 Oct; 28(21):31330-31344. PubMed ID: 33115108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vertically Illuminated, Resonant Cavity Enhanced, Graphene-Silicon Schottky Photodetectors.
    Casalino M; Sassi U; Goykhman I; Eiden A; Lidorikis E; Milana S; De Fazio D; Tomarchio F; Iodice M; Coppola G; Ferrari AC
    ACS Nano; 2017 Nov; 11(11):10955-10963. PubMed ID: 29072904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polarization-insensitive hot-electron infrared photodetection by double Schottky junction and multilayer grating.
    Zhang Q; Zhang C; Qin L; Li X
    Opt Lett; 2018 Jul; 43(14):3325-3328. PubMed ID: 30004497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared hot-carrier photodetection based on planar perfect absorber.
    Zhan Y; Wu K; Zhang C; Wu S; Li X
    Opt Lett; 2015 Sep; 40(18):4261-4. PubMed ID: 26371911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible Titanium Nitride/Germanium-Tin Photodetectors Based on Sub-Bandgap Absorption.
    An S; Liao Y; Kim M
    ACS Appl Mater Interfaces; 2021 Dec; 13(51):61396-61403. PubMed ID: 34851080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. III-Nitrides Resonant Cavity Photodetector Devices.
    Fernández S; Naranjo FB; Sánchez-García MÁ; Calleja E
    Materials (Basel); 2020 Oct; 13(19):. PubMed ID: 33027953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrabroadband hot-hole photodetector based on ultrathin gold film.
    Zheng JR; You EM; Hu YF; Yi J; Tian ZQ
    Nanoscale; 2023 May; 15(19):8863-8869. PubMed ID: 37128810
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photodetectors Based on MASnI
    Zhang C; Chen Y; Wang M; Guo L; Qin L; Yang Z; Wang C; Li X; Cao G
    ACS Nano; 2024 Jul; 18(29):19303-19313. PubMed ID: 38976792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All-silicon and in-line integration of variable optical attenuators and photodetectors based on submicrometer rib waveguides.
    Park S; Yamada K; Tsuchizawa T; Watanabe T; Nishi H; Shinojima H; Itabashi S
    Opt Express; 2010 Jul; 18(15):15303-10. PubMed ID: 20720907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A graphene/single GaAs nanowire Schottky junction photovoltaic device.
    Luo Y; Yan X; Zhang J; Li B; Wu Y; Lu Q; Jin C; Zhang X; Ren X
    Nanoscale; 2018 May; 10(19):9212-9217. PubMed ID: 29726561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GeSn-on-insulator dual-waveband resonant-cavity-enhanced photodetectors at the 2  µm and 1.55  µm optical communication bands.
    Chen Q; Wu S; Zhang L; Burt D; Zhou H; Nam D; Fan W; Tan CS
    Opt Lett; 2021 Aug; 46(15):3809-3812. PubMed ID: 34329287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-speed characteristics of vertical cavity surface emitting lasers and resonant-cavity-enhanced photodetectors based on intracavity-contacted structure.
    Song YM; Jeong BK; Na BH; Chang KS; Yu JS; Lee YT
    Appl Opt; 2009 Sep; 48(25):F11-7. PubMed ID: 19724307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bias voltage-tuned hot-electron optical sensing with planar Au-MoS
    Shao W; Yang X; Hu J; Wang Y
    Opt Express; 2022 Nov; 30(24):43172-43181. PubMed ID: 36523021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of antenna-coupled Nb
    Tu X; Jiang C; Xiao P; Kang L; Zhai S; Jiang Z; Feng Su R; Jia X; Zhang L; Chen J; Wu P
    Opt Express; 2018 Apr; 26(7):8990-8997. PubMed ID: 29715857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.