These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30604815)

  • 1. DNA-free directed assembly in single-molecule cut-and-paste.
    Erlich KR; Sedlak SM; Jobst MA; Milles LF; Gaub HE
    Nanoscale; 2019 Jan; 11(2):407-411. PubMed ID: 30604815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optically monitoring the mechanical assembly of single molecules.
    Kufer SK; Strackharn M; Stahl SW; Gumpp H; Puchner EM; Gaub HE
    Nat Nanotechnol; 2009 Jan; 4(1):45-9. PubMed ID: 19119282
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-molecule cut-and-paste surface assembly.
    Kufer SK; Puchner EM; Gumpp H; Liedl T; Gaub HE
    Science; 2008 Feb; 319(5863):594-6. PubMed ID: 18239119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A one-pot functionalization strategy for immobilizing proteins onto linear dsDNA scaffolds.
    Berti L; Medintz IL; Alessandrini A; Facci P
    Nanotechnology; 2009 Jun; 20(23):235101. PubMed ID: 19448298
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resolving single-molecule assembled patterns with superresolution blink-microscopy.
    Cordes T; Strackharn M; Stahl SW; Summerer W; Steinhauer C; Forthmann C; Puchner EM; Vogelsang J; Gaub HE; Tinnefeld P
    Nano Lett; 2010 Feb; 10(2):645-51. PubMed ID: 20017533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-DNA chimeras for nano assembly.
    Pippig DA; Baumann F; Strackharn M; Aschenbrenner D; Gaub HE
    ACS Nano; 2014 Jul; 8(7):6551-5. PubMed ID: 24897163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protocols for self-assembly and imaging of DNA nanostructures.
    Sobey TL; Simmel FC
    Methods Mol Biol; 2011; 749():13-32. PubMed ID: 21674362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoscale positioning of individual DNA molecules by an atomic force microscope.
    Josephs EA; Ye T
    J Am Chem Soc; 2010 Aug; 132(30):10236-8. PubMed ID: 20662500
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanomaterials as matrices for enzyme immobilization.
    Gupta MN; Kaloti M; Kapoor M; Solanki K
    Artif Cells Blood Substit Immobil Biotechnol; 2011 Apr; 39(2):98-109. PubMed ID: 20958099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sub-10 nm Resolution Patterning of Pockets for Enzyme Immobilization with Independent Density and Quasi-3D Topography Control.
    Liu X; Kumar M; Calo A; Albisetti E; Zheng X; Manning KB; Elacqua E; Weck M; Ulijn RV; Riedo E
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41780-41790. PubMed ID: 31609566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly and microscopic characterization of DNA origami structures.
    Scheible M; Jungmann R; Simmel FC
    Adv Exp Med Biol; 2012; 733():87-96. PubMed ID: 22101715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA binding adaptors to assemble proteins of interest on DNA scaffold.
    Nakata E; Dinh H; Nguyen TM; Morii T
    Methods Enzymol; 2019; 617():287-322. PubMed ID: 30784406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and characterization of self-assembled DNA nanostructures.
    Lin C; Ke Y; Chhabra R; Sharma J; Liu Y; Yan H
    Methods Mol Biol; 2011; 749():1-11. PubMed ID: 21674361
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discovering anomalous hybridization kinetics on DNA nanostructures using single-molecule fluorescence microscopy.
    Johnson-Buck A; Walter NG
    Methods; 2014 May; 67(2):177-84. PubMed ID: 24602840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-step rapid assembly of DNA origami nanostructures for addressable nanoscale bioreactors.
    Fu Y; Zeng D; Chao J; Jin Y; Zhang Z; Liu H; Li D; Ma H; Huang Q; Gothelf KV; Fan C
    J Am Chem Soc; 2013 Jan; 135(2):696-702. PubMed ID: 23237536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimuli-responsive hydrogel membranes coupled with biocatalytic processes.
    Tokarev I; Gopishetty V; Zhou J; Pita M; Motornov M; Katz E; Minko S
    ACS Appl Mater Interfaces; 2009 Mar; 1(3):532-6. PubMed ID: 20355971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mastering the complexity of DNA nanostructures.
    Brucale M; Zuccheri G; Samorì B
    Trends Biotechnol; 2006 May; 24(5):235-43. PubMed ID: 16542743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo production of RNA nanostructures via programmed folding of single-stranded RNAs.
    Li M; Zheng M; Wu S; Tian C; Liu D; Weizmann Y; Jiang W; Wang G; Mao C
    Nat Commun; 2018 Jun; 9(1):2196. PubMed ID: 29875441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and self-assembly of a leucine-enkephalin analogue in different nanostructures: application of nanovesicles.
    Koley P; Gayen A; Drew MG; Mukhopadhyay C; Pramanik A
    Small; 2012 Apr; 8(7):984-90. PubMed ID: 22323423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and atomic force microscopy (AFM) characterization of DNA scaffolds as a template for protein immobilization.
    Lee HU; Kim H; Lee YC; Lee J
    J Nanosci Nanotechnol; 2014 Nov; 14(11):8699-702. PubMed ID: 25958587
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.