These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30604815)

  • 41. DNA nanotechnology and fluorescence applications.
    Schlichthaerle T; Strauss MT; Schueder F; Woehrstein JB; Jungmann R
    Curr Opin Biotechnol; 2016 Jun; 39():41-47. PubMed ID: 26773303
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Atomically precise arrays of fluorescent silver clusters: a modular approach for metal cluster photonics on DNA nanostructures.
    Copp SM; Schultz DE; Swasey S; Gwinn EG
    ACS Nano; 2015 Mar; 9(3):2303-10. PubMed ID: 25630562
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Core/Shell fluorescent silica nanoparticles for chemical sensing: towards single-particle laboratories.
    Burns A; Sengupta P; Zedayko T; Baird B; Wiesner U
    Small; 2006 Jun; 2(6):723-6. PubMed ID: 17193111
    [No Abstract]   [Full Text] [Related]  

  • 44. Nanostructures: the manifold faces of DNA.
    Smith LM
    Nature; 2006 Mar; 440(7082):283-4. PubMed ID: 16541053
    [No Abstract]   [Full Text] [Related]  

  • 45. Nanoporous gold for enzyme immobilization.
    Stine KJ; Jefferson K; Shulga OV
    Methods Mol Biol; 2011; 679():67-83. PubMed ID: 20865389
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Assembly of designed protein scaffolds into monolayers for nanoparticle patterning.
    Mejias SH; Couleaud P; Casado S; Granados D; Garcia MA; Abad JM; Cortajarena AL
    Colloids Surf B Biointerfaces; 2016 May; 141():93-101. PubMed ID: 26844645
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Site-directed, on-surface assembly of DNA nanostructures.
    Meyer R; Saccà B; Niemeyer CM
    Angew Chem Int Ed Engl; 2015 Oct; 54(41):12039-43. PubMed ID: 26306556
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Observing and Controlling the Folding Pathway of DNA Origami at the Nanoscale.
    Wah JL; David C; Rudiuk S; Baigl D; Estevez-Torres A
    ACS Nano; 2016 Feb; 10(2):1978-87. PubMed ID: 26795025
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Assembly of multienzyme complexes on DNA nanostructures.
    Fu J; Yang YR; Dhakal S; Zhao Z; Liu M; Zhang T; Walter NG; Yan H
    Nat Protoc; 2016 Nov; 11(11):2243-2273. PubMed ID: 27763626
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Intermittent contact mode piezoresponse force microscopy in a liquid environment.
    Rodriguez BJ; Jesse S; Habelitz S; Proksch R; Kalinin SV
    Nanotechnology; 2009 May; 20(19):195701. PubMed ID: 19420645
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Top-down nanomechanical machining of three-dimensional nanostructures by atomic force microscopy.
    Yan Y; Hu Z; Zhao X; Sun T; Dong S; Li X
    Small; 2010 Mar; 6(6):724-8. PubMed ID: 20166110
    [No Abstract]   [Full Text] [Related]  

  • 52. Self-assembly of ultrabright fluorescent silica particles.
    Sokolov I; Kievsky YY; Kaszpurenko JM
    Small; 2007 Mar; 3(3):419-23. PubMed ID: 17245779
    [No Abstract]   [Full Text] [Related]  

  • 53. Programmable self-assembly of metal ions inside artificial DNA duplexes.
    Tanaka K; Clever GH; Takezawa Y; Yamada Y; Kaul C; Shionoya M; Carell T
    Nat Nanotechnol; 2006 Dec; 1(3):190-4. PubMed ID: 18654185
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology.
    Müller DJ; Dufrêne YF
    Nat Nanotechnol; 2008 May; 3(5):261-9. PubMed ID: 18654521
    [No Abstract]   [Full Text] [Related]  

  • 55. DNA nanotechnology.
    Wilner OI; Willner B; Willner I
    Adv Exp Med Biol; 2012; 733():97-114. PubMed ID: 22101716
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A DNA nanostructure for the functional assembly of chemical groups with tunable stoichiometry and defined nanoscale geometry.
    Mitchell N; Schlapak R; Kastner M; Armitage D; Chrzanowski W; Riener J; Hinterdorfer P; Ebner A; Howorka S
    Angew Chem Int Ed Engl; 2009; 48(3):525-7. PubMed ID: 19067449
    [No Abstract]   [Full Text] [Related]  

  • 57. Fluorescence Microscopy of Nanochannel-Confined DNA.
    Westerlund F; Persson F; Fritzsche J; Beech JP; Tegenfeldt JO
    Methods Mol Biol; 2018; 1665():173-198. PubMed ID: 28940070
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Real-time nanofabrication with high-speed atomic force microscopy.
    Vicary JA; Miles MJ
    Nanotechnology; 2009 Mar; 20(9):095302. PubMed ID: 19417485
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Oligosilane-nanofibers can be prepared through fabrication of permethyldecasilane within a helical superstructure of schizophyllan.
    Haraguchi S; Hasegawa T; Numata M; Fujiki M; Uezu K; Sakurai K; Shinkai S
    Org Lett; 2005 Dec; 7(25):5605-8. PubMed ID: 16321002
    [TBL] [Abstract][Full Text] [Related]  

  • 60. DNA-templated three-branched nanostructures for nanoelectronic devices.
    Becerril HA; Stoltenberg RM; Wheeler DR; Davis RC; Harb JN; Woolley AT
    J Am Chem Soc; 2005 Mar; 127(9):2828-9. PubMed ID: 15740099
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.