These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 30604815)

  • 61. Nanomanipulation: Molecular cranes swing into action.
    Duwez AS
    Nat Nanotechnol; 2008 Apr; 3(4):188-9. PubMed ID: 18654499
    [No Abstract]   [Full Text] [Related]  

  • 62. Contacting individual Fe(110) dots in a single electron-beam lithography step.
    Cheynis F; Haas H; Fournier T; Ranno L; Wernsdorfer W; Fruchart O; Toussaint JC
    Nanotechnology; 2009 Jul; 20(28):285302. PubMed ID: 19546492
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Atomic force microscopy: getting a feeling for the nanoworld.
    Stark RW
    Nat Nanotechnol; 2007 Aug; 2(8):461-2. PubMed ID: 18654337
    [No Abstract]   [Full Text] [Related]  

  • 64. Monitoring patterned enzymatic polymerization on DNA origami at single-molecule level.
    Okholm AH; Aslan H; Besenbacher F; Dong M; Kjems J
    Nanoscale; 2015 Jul; 7(25):10970-3. PubMed ID: 26061114
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Nanoscale arrangement of proteins by single-molecule cut-and-paste.
    Strackharn M; Pippig DA; Meyer P; Stahl SW; Gaub HE
    J Am Chem Soc; 2012 Sep; 134(37):15193-6. PubMed ID: 22950442
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Toward multiprotein nanoarrays using nanografting and DNA directed immobilization of proteins.
    Bano F; Fruk L; Sanavio B; Glettenberg M; Casalis L; Niemeyer CM; Scoles G
    Nano Lett; 2009 Jul; 9(7):2614-8. PubMed ID: 19583282
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Recent progress in DNA origami technology.
    Endo M; Sugiyama H
    Curr Protoc Nucleic Acid Chem; 2011 Jun; Chapter 12():Unit12.8. PubMed ID: 21638269
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Self-assembly programming of DNA polyominoes.
    Ong HS; Syafiq-Rahim M; Kasim NH; Firdaus-Raih M; Ramlan EI
    J Biotechnol; 2016 Oct; 236():141-51. PubMed ID: 27569553
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Liposome-entrapped polymerases as models for microscale/nanoscale bioreactors.
    Monnard PA
    J Membr Biol; 2003 Jan; 191(2):87-97. PubMed ID: 12533776
    [No Abstract]   [Full Text] [Related]  

  • 70. Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania.
    Luckarift HR; Dickerson MB; Sandhage KH; Spain JC
    Small; 2006 May; 2(5):640-3. PubMed ID: 17193101
    [No Abstract]   [Full Text] [Related]  

  • 71. DNA-templated lithography and nanofabrication for the fabrication of nanoscale electronic circuitry.
    Gates EP; Dearden AM; Woolley AT
    Crit Rev Anal Chem; 2014; 44(4):354-70. PubMed ID: 25391721
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The tube or the helix? This is the question: towards the fully controlled DNA-directed assembly of carbon nanotubes.
    Zuccheri G; Brucale M; Samorì B
    Small; 2005 Jun; 1(6):590-2. PubMed ID: 17193491
    [No Abstract]   [Full Text] [Related]  

  • 73. GENESUS: a two-step sequence design program for DNA nanostructure self-assembly.
    Tsutsumi T; Asakawa T; Kanegami A; Okada T; Tahira T; Hayashi K
    Biotechniques; 2014; 56(4):180-5. PubMed ID: 24724843
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Native protein nanolithography that can write, read and erase.
    Tinazli A; Piehler J; Beuttler M; Guckenberger R; Tampé R
    Nat Nanotechnol; 2007 Apr; 2(4):220-5. PubMed ID: 18654266
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Increasing protein stability through control of the nanoscale environment.
    Asuri P; Karajanagi SS; Yang H; Yim TJ; Kane RS; Dordick JS
    Langmuir; 2006 Jun; 22(13):5833-6. PubMed ID: 16768515
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Still feeling the force.
    Nat Nanotechnol; 2008 May; 3(5):241. PubMed ID: 18654510
    [No Abstract]   [Full Text] [Related]  

  • 77. Programmably Shaped Carbon Nanostructure from Shape-Conserving Carbonization of DNA.
    Zhou F; Sun W; Ricardo KB; Wang D; Shen J; Yin P; Liu H
    ACS Nano; 2016 Mar; 10(3):3069-77. PubMed ID: 26845641
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Isothermal hybridization kinetics of DNA assembly of two-dimensional DNA origami.
    Song J; Zhang Z; Zhang S; Liu L; Li Q; Xie E; Gothelf KV; Besenbacher F; Dong M
    Small; 2013 Sep; 9(17):2954-9. PubMed ID: 23436715
    [TBL] [Abstract][Full Text] [Related]  

  • 79. NMR of Immobilized Enzymes.
    Cerofolini L; Ravera E; Fragai M; Luchinat C
    Methods Mol Biol; 2020; 2100():363-383. PubMed ID: 31939136
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Selective aluminum passivation for targeted immobilization of single DNA polymerase molecules in zero-mode waveguide nanostructures.
    Korlach J; Marks PJ; Cicero RL; Gray JJ; Murphy DL; Roitman DB; Pham TT; Otto GA; Foquet M; Turner SW
    Proc Natl Acad Sci U S A; 2008 Jan; 105(4):1176-81. PubMed ID: 18216253
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.