These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30604829)

  • 1. Universal description of heating-induced reshaping preference of core-shell bimetallic nanoparticles.
    Zhao Z; Xu H; Gao Y; Cheng D
    Nanoscale; 2019 Jan; 11(3):1386-1395. PubMed ID: 30604829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. General Trends in Core-Shell Preferences for Bimetallic Nanoparticles.
    Eom N; Messing ME; Johansson J; Deppert K
    ACS Nano; 2021 May; 15(5):8883-8895. PubMed ID: 33890464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Atomic-scale insights into structural and thermodynamic stability of Pd-Ni bimetallic nanoparticles.
    Huang R; Wen YH; Zhu ZZ; Sun SG
    Phys Chem Chem Phys; 2016 Apr; 18(14):9847-54. PubMed ID: 27003035
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic structure and thermal stability of Pt-Fe bimetallic nanoparticles: from alloy to core/shell architectures.
    Huang R; Wen YH; Shao GF; Sun SG
    Phys Chem Chem Phys; 2016 Jun; 18(25):17010-7. PubMed ID: 27297782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties.
    Zaleska-Medynska A; Marchelek M; Diak M; Grabowska E
    Adv Colloid Interface Sci; 2016 Mar; 229():80-107. PubMed ID: 26805520
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal Stability of Platinum-Cobalt Bimetallic Nanoparticles: Chemically Disordered Alloys, Ordered Intermetallics, and Core-Shell Structures.
    Huang R; Shao GF; Zhang Y; Wen YH
    ACS Appl Mater Interfaces; 2017 Apr; 9(14):12486-12493. PubMed ID: 28349693
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light-Scattering Simulations from Spherical Bimetallic Core-Shell Nanoparticles.
    Ruffino F
    Micromachines (Basel); 2021 Mar; 12(4):. PubMed ID: 33810270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmission electron microscopy and theoretical analysis of AuCu nanoparticles: atomic distribution and dynamic behavior.
    Ascencio JA; Liu HB; Pal U; Medina A; Wang ZL
    Microsc Res Tech; 2006 Jul; 69(7):522-30. PubMed ID: 16732542
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predicted trends of core-shell preferences for 132 late transition-metal binary-alloy nanoparticles.
    Wang LL; Johnson DD
    J Am Chem Soc; 2009 Oct; 131(39):14023-9. PubMed ID: 19754042
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the Core Location on the Structural Stability of Ni-Au Core-Shell Nanoparticles.
    Schnedlitz M; Fernandez-Perea R; Knez D; Lasserus M; Schiffmann A; Hofer F; Hauser AW; de Lara-Castells MP; Ernst WE
    J Phys Chem C Nanomater Interfaces; 2019 Aug; 123(32):20037-20043. PubMed ID: 33014236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diverse melting modes and structural collapse of hollow bimetallic core-shell nanoparticles: a perspective from molecular dynamics simulations.
    Huang R; Shao GF; Zeng XM; Wen YH
    Sci Rep; 2014 Nov; 4():7051. PubMed ID: 25394424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eco-friendly microwave-assisted green and rapid synthesis of well-stabilized gold and core-shell silver-gold nanoparticles.
    El-Naggar ME; Shaheen TI; Fouda MM; Hebeish AA
    Carbohydr Polym; 2016 Jan; 136():1128-36. PubMed ID: 26572455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.
    Haldar KK; Kundu S; Patra A
    ACS Appl Mater Interfaces; 2014 Dec; 6(24):21946-53. PubMed ID: 25456348
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Platinum-based oxygen reduction electrocatalysts.
    Wu J; Yang H
    Acc Chem Res; 2013 Aug; 46(8):1848-57. PubMed ID: 23808919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PdPt bimetallic nanoparticles enabled by shape control with halide ions and their enhanced catalytic activities.
    Zhang J; Wan L; Liu L; Deng Y; Zhong C; Hu W
    Nanoscale; 2016 Feb; 8(7):3962-72. PubMed ID: 26511671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic structure of Au-Pd bimetallic alloyed nanoparticles.
    Ding Y; Fan F; Tian Z; Wang ZL
    J Am Chem Soc; 2010 Sep; 132(35):12480-6. PubMed ID: 20712315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Melting Behavior of Bimetallic and Trimetallic Nanoparticles: A Review of MD Simulation Studies.
    Akbarzadeh H; Mehrjouei E; Abbaspour M; Shamkhali AN
    Top Curr Chem (Cham); 2021 Apr; 379(3):22. PubMed ID: 33890199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seeding a New Kind of Garden: Synthesis of Architecturally Defined Multimetallic Nanostructures by Seed-Mediated Co-Reduction.
    Weiner RG; Kunz MR; Skrabalak SE
    Acc Chem Res; 2015 Oct; 48(10):2688-95. PubMed ID: 26339803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-pot synthesis of Ag-Au bimetallic nanoparticles with Au shell and their high catalytic activity for aerobic glucose oxidation.
    Zhang H; Okuni J; Toshima N
    J Colloid Interface Sci; 2011 Feb; 354(1):131-8. PubMed ID: 21067768
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining optical lithography with rapid microwave heating for the selective growth of Au/Ag bimetallic core/shell structures on patterned silicon wafers.
    Liu FK; Huang PW; Chang YC; Ko FH; Chu TC
    Langmuir; 2005 Mar; 21(6):2519-25. PubMed ID: 15752048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.