These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30604829)

  • 21. Unidirectional thermal diffusion in bimetallic Cu@Au nanoparticles.
    Liu S; Sun Z; Liu Q; Wu L; Huang Y; Yao T; Zhang J; Hu T; Ge M; Hu F; Xie Z; Pan G; Wei S
    ACS Nano; 2014 Feb; 8(2):1886-92. PubMed ID: 24472038
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Levelling the playing field: screening for synergistic effects in coalesced bimetallic nanoparticles.
    Tan RL; Song X; Chen B; Chong WH; Fang Y; Zhang H; Wei J; Chen H
    Nanoscale; 2016 Feb; 8(6):3447-53. PubMed ID: 26797095
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis, characterization, and structure-selective extraction of 1-3-nm diameter AuAg dendrimer-encapsulated bimetallic nanoparticles.
    Wilson OM; Scott RW; Garcia-Martinez JC; Crooks RM
    J Am Chem Soc; 2005 Jan; 127(3):1015-24. PubMed ID: 15656640
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peptide-Directed PdAu Nanoscale Surface Segregation: Toward Controlled Bimetallic Architecture for Catalytic Materials.
    Bedford NM; Showalter AR; Woehl TJ; Hughes ZE; Lee S; Reinhart B; Ertem SP; Coughlin EB; Ren Y; Walsh TR; Bunker BA
    ACS Nano; 2016 Sep; 10(9):8645-59. PubMed ID: 27583654
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interface-mediated Kirkendall effect and nanoscale void migration in bimetallic nanoparticles during interdiffusion.
    Chee SW; Wong ZM; Baraissov Z; Tan SF; Tan TL; Mirsaidov U
    Nat Commun; 2019 Jun; 10(1):2831. PubMed ID: 31249286
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of composition and architecture on the thermodynamic behavior of AuCu nanoparticles.
    Yang WH; Yu FQ; Huang R; Lin YX; Wen YH
    Nanoscale; 2024 Jul; 16(27):13197-13209. PubMed ID: 38916453
    [TBL] [Abstract][Full Text] [Related]  

  • 27. As(V) removal capacity of FeCu bimetallic nanoparticles in aqueous solutions: The influence of Cu content and morphologic changes in bimetallic nanoparticles.
    Sepúlveda P; Rubio MA; Baltazar SE; Rojas-Nunez J; Sánchez Llamazares JL; Garcia AG; Arancibia-Miranda N
    J Colloid Interface Sci; 2018 Aug; 524():177-187. PubMed ID: 29653311
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural selection and amorphization of small Ni-Ti bimetallic clusters.
    Liu HB; Canizal G; Schabes-Retchkiman PS; Ascencio JA
    J Phys Chem B; 2006 Jun; 110(25):12333-9. PubMed ID: 16800556
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Graphene oxide-promoted reshaping and coarsening of gold nanorods and nanoparticles.
    Pan H; Low S; Weerasuriya N; Shon YS
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3406-13. PubMed ID: 25611371
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Categorization of atomic mixing patterns in bimetallic nanoparticles by the energy competition.
    Yun K; Nam HS; Kim S
    Phys Chem Chem Phys; 2020 Apr; 22(15):7787-7793. PubMed ID: 32239065
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Superheating and melting within aluminum core-oxide shell nanoparticles for a broad range of heating rates: multiphysics phase field modeling.
    Hwang YS; Levitas VI
    Phys Chem Chem Phys; 2016 Oct; 18(41):28835-28853. PubMed ID: 27722318
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and characterization of core-shell bimetallic nanoparticles for synergistic antimicrobial effect studies in combination with doxycycline on burn specific pathogens.
    Fakhri A; Tahami S; Naji M
    J Photochem Photobiol B; 2017 Apr; 169():21-26. PubMed ID: 28254569
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Influence of shell thickness on the thermal stability and melting-like behavior of Al@Fe core-shell nanoparticles from atomistic simulations: a structural and dynamic description.
    Cuba-Supanta G; Pinto-Vergara MZ; Huaman Morales E; Romero Peña MH; Rojas-Tapia J
    J Phys Condens Matter; 2023 May; 35(32):. PubMed ID: 37146619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bimetallic Au(core)-Ag(shell) nanoparticles from interfacial redox process using poly(o-methoxyaniline).
    Mukherjee P; Nandi AK
    J Colloid Interface Sci; 2010 Apr; 344(1):30-6. PubMed ID: 20067848
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Modeling the melting temperature of nanoscaled bimetallic alloys.
    Li M; Zhu TS
    Phys Chem Chem Phys; 2016 Jun; 18(25):16958-63. PubMed ID: 27292044
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A novel Co@Au structure formed in bimetallic core@shell nanoparticles.
    Mayoral A; Llamosa D; Huttel Y
    Chem Commun (Camb); 2015 May; 51(40):8442-5. PubMed ID: 25719945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Understanding the atomic-level process of CO-adsorption-driven surface segregation of Pd in (AuPd)
    An H; Ha H; Yoo M; Kim HY
    Nanoscale; 2017 Aug; 9(33):12077-12086. PubMed ID: 28799609
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Temperature effect on the synthesis of Au-Pt bimetallic nanoparticles.
    Garcia-Gutierrez DI; Gutierrez-Wing CE; Giovanetti L; Ramallo-López JM; Requejo FG; Jose-Yacaman M
    J Phys Chem B; 2005 Mar; 109(9):3813-21. PubMed ID: 16851430
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermal Reshaping Dynamics of Gold Nanorods: Influence of Size, Shape, and Local Environment.
    Kennedy WJ; Izor S; Anderson BD; Frank G; Varshney V; Ehlert GJ
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43865-43873. PubMed ID: 30480429
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications.
    Yang G; Chen D; Lv P; Kong X; Sun Y; Wang Z; Yuan Z; Liu H; Yang J
    Sci Rep; 2016 Oct; 6():35252. PubMed ID: 27734945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.