BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 30605087)

  • 1. Computer-Aided Diagnosis of Label-Free 3-D Optical Coherence Microscopy Images of Human Cervical Tissue.
    Ma Y; Xu T; Huang X; Wang X; Li C; Jerwick J; Ning Y; Zeng X; Wang B; Wang Y; Zhang Z; Zhang X; Zhou C
    IEEE Trans Biomed Eng; 2019 Sep; 66(9):2447-2456. PubMed ID: 30605087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrahigh-resolution optical coherence microscopy accurately classifies precancerous and cancerous human cervix free of labeling.
    Zeng X; Zhang X; Li C; Wang X; Jerwick J; Xu T; Ning Y; Wang Y; Zhang L; Zhang Z; Ma Y; Zhou C
    Theranostics; 2018; 8(11):3099-3110. PubMed ID: 29896305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cervical optical coherence tomography image classification based on contrastive self-supervised texture learning.
    Chen K; Wang Q; Ma Y
    Med Phys; 2022 Jun; 49(6):3638-3653. PubMed ID: 35342956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated local binary pattern texture features for classification of breast tissue imaged by optical coherence microscopy.
    Wan S; Lee HC; Huang X; Xu T; Xu T; Zeng X; Zhang Z; Sheikine Y; Connolly JL; Fujimoto JG; Zhou C
    Med Image Anal; 2017 May; 38():104-116. PubMed ID: 28327449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cross-Attention Based Multi-Resolution Feature Fusion Model for Self-Supervised Cervical OCT Image Classification.
    Wang Q; Chen K; Dou W; Ma Y
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(4):2541-2554. PubMed ID: 37027657
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-Aided Diagnosis in Histopathological Images of the Endometrium Using a Convolutional Neural Network and Attention Mechanisms.
    Sun H; Zeng X; Xu T; Peng G; Ma Y
    IEEE J Biomed Health Inform; 2020 Jun; 24(6):1664-1676. PubMed ID: 31581102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diagnostic efficacy of computer extracted image features in optical coherence tomography of the precancerous cervix.
    Kang W; Qi X; Tresser NJ; Kareta M; Belinson JL; Rollins AM
    Med Phys; 2011 Jan; 38(1):107-13. PubMed ID: 21361180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep Convolution Neural Network for Malignancy Detection and Classification in Microscopic Uterine Cervix Cell Images.
    P B S; Faruqi F; K S H; Kudva R
    Asian Pac J Cancer Prev; 2019 Nov; 20(11):3447-3456. PubMed ID: 31759371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UD-MIL: Uncertainty-Driven Deep Multiple Instance Learning for OCT Image Classification.
    Wang X; Tang F; Chen H; Luo L; Tang Z; Ran AR; Cheung CY; Heng PA
    IEEE J Biomed Health Inform; 2020 Dec; 24(12):3431-3442. PubMed ID: 32248132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated optical coherence tomography and microscopy for ex vivo multiscale evaluation of human breast tissues.
    Zhou C; Cohen DW; Wang Y; Lee HC; Mondelblatt AE; Tsai TH; Aguirre AD; Fujimoto JG; Connolly JL
    Cancer Res; 2010 Dec; 70(24):10071-9. PubMed ID: 21056988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic diagnosis of abnormal macula in retinal optical coherence tomography images using wavelet-based convolutional neural network features and random forests classifier.
    Rasti R; Mehridehnavi A; Rabbani H; Hajizadeh F
    J Biomed Opt; 2018 Mar; 23(3):1-10. PubMed ID: 29564864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optical coherence microscopy in 1700 nm spectral band for high-resolution label-free deep-tissue imaging.
    Yamanaka M; Teranishi T; Kawagoe H; Nishizawa N
    Sci Rep; 2016 Aug; 6():31715. PubMed ID: 27546517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-speed processing architecture for spectral-domain optical coherence microscopy.
    Chelliyil RG; Ralston TS; Marks DL; Boppart SA
    J Biomed Opt; 2008; 13(4):044013. PubMed ID: 19021341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection and diagnosis of oral neoplasia with an optical coherence microscope.
    Clark AL; Gillenwater A; Alizadeh-Naderi R; El-Naggar AK; Richards-Kortum R
    J Biomed Opt; 2004; 9(6):1271-80. PubMed ID: 15568948
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully automated detection of retinal disorders by image-based deep learning.
    Li F; Chen H; Liu Z; Zhang X; Wu Z
    Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy.
    Lee KS; Zhao H; Ibrahim SF; Meemon N; Khoudeir L; Rolland JP
    J Biomed Opt; 2012 Dec; 17(12):126006. PubMed ID: 23208217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning assisted detection of glaucomatous optic neuropathy and potential designs for a generalizable model.
    Ko YC; Wey SY; Chen WT; Chang YF; Chen MJ; Chiou SH; Liu CJ; Lee CY
    PLoS One; 2020; 15(5):e0233079. PubMed ID: 32407355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-supervised iterative refinement learning for macular OCT volumetric data classification.
    Qiu J; Sun Y
    Comput Biol Med; 2019 Aug; 111():103327. PubMed ID: 31302456
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OCT-based deep learning algorithm for the evaluation of treatment indication with anti-vascular endothelial growth factor medications.
    Prahs P; Radeck V; Mayer C; Cvetkov Y; Cvetkova N; Helbig H; Märker D
    Graefes Arch Clin Exp Ophthalmol; 2018 Jan; 256(1):91-98. PubMed ID: 29127485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attention-Guided 3D-CNN Framework for Glaucoma Detection and Structural-Functional Association Using Volumetric Images.
    George Y; Antony BJ; Ishikawa H; Wollstein G; Schuman JS; Garnavi R
    IEEE J Biomed Health Inform; 2020 Dec; 24(12):3421-3430. PubMed ID: 32750930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.