These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 30605092)

  • 1. Impedance-Based Gaussian Processes for Modeling Human Motor Behavior in Physical and Non-Physical Interaction.
    Medina JR; Borner H; Endo S; Hirche S
    IEEE Trans Biomed Eng; 2019 Sep; 66(9):2499-2511. PubMed ID: 30605092
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian Estimation of Human Impedance and Motion Intention for Human-Robot Collaboration.
    Yu X; He W; Li Y; Xue C; Li J; Zou J; Yang C
    IEEE Trans Cybern; 2021 Apr; 51(4):1822-1834. PubMed ID: 31647450
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning the dynamics of reaching movements results in the modification of arm impedance and long-latency perturbation responses.
    Wang T; Dordevic GS; Shadmehr R
    Biol Cybern; 2001 Dec; 85(6):437-48. PubMed ID: 11762234
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stochastic estimation of human arm impedance under nonlinear friction in robot joints: a model study.
    Chang PH; Kang SH
    J Neurosci Methods; 2010 May; 189(1):97-112. PubMed ID: 20298718
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impedance control and internal model formation when reaching in a randomly varying dynamical environment.
    Takahashi CD; Scheidt RA; Reinkensmeyer DJ
    J Neurophysiol; 2001 Aug; 86(2):1047-51. PubMed ID: 11495973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sequential Monte Carlo point-process estimation of kinematics from neural spiking activity for brain-machine interfaces.
    Wang Y; Paiva AR; Príncipe JC; Sanchez JC
    Neural Comput; 2009 Oct; 21(10):2894-930. PubMed ID: 19548797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stochastic estimation of arm mechanical impedance during robotic stroke rehabilitation.
    Palazzolo JJ; Ferraro M; Krebs HI; Lynch D; Volpe BT; Hogan N
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):94-103. PubMed ID: 17436881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reference Trajectory Reshaping Optimization and Control of Robotic Exoskeletons for Human-Robot Co-Manipulation.
    Wu X; Li Z; Kan Z; Gao H
    IEEE Trans Cybern; 2020 Aug; 50(8):3740-3751. PubMed ID: 31484148
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning and generation of goal-directed arm reaching from scratch.
    Kambara H; Kim K; Shin D; Sato M; Koike Y
    Neural Netw; 2009 May; 22(4):348-61. PubMed ID: 19121565
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trajectory tracking control of 7-DOF redundant robot based on estimation of intention in physical human-robot interaction.
    Ye L; Xiong G; Zeng C; Zhang H
    Sci Prog; 2020; 103(3):36850420953642. PubMed ID: 32924809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of Involuntary Components of Human Arm Impedance in Multi-Joint Movements via Feedback Jerk Isolation.
    Börner H; Endo S; Hirche S
    Front Neurosci; 2020; 14():459. PubMed ID: 32523504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The central nervous system stabilizes unstable dynamics by learning optimal impedance.
    Burdet E; Osu R; Franklin DW; Milner TE; Kawato M
    Nature; 2001 Nov; 414(6862):446-9. PubMed ID: 11719805
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computing movement geometry: a step in sensory-motor transformations.
    Zipser D; Torres E
    Prog Brain Res; 2007; 165():411-24. PubMed ID: 17925261
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feedforward impedance control efficiently reduce motor variability.
    Osu R; Morishige K; Miyamoto H; Kawato M
    Neurosci Res; 2009 Sep; 65(1):6-10. PubMed ID: 19523999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying generalization from trial-by-trial behavior of adaptive systems that learn with basis functions: theory and experiments in human motor control.
    Donchin O; Francis JT; Shadmehr R
    J Neurosci; 2003 Oct; 23(27):9032-45. PubMed ID: 14534237
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different mechanisms involved in adaptation to stable and unstable dynamics.
    Osu R; Burdet E; Franklin DW; Milner TE; Kawato M
    J Neurophysiol; 2003 Nov; 90(5):3255-69. PubMed ID: 14615431
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mathematical model of the adaptive control of human arm motions.
    Sanner RM; Kosha M
    Biol Cybern; 1999 May; 80(5):369-82. PubMed ID: 10365428
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anticipatory coarticulation in non-speeded arm movements can be motor-equivalent, carry-over coarticulation always is.
    Hansen E; Grimme B; Reimann H; Schöner G
    Exp Brain Res; 2018 May; 236(5):1293-1307. PubMed ID: 29492588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian population decoding of motor cortical activity using a Kalman filter.
    Wu W; Gao Y; Bienenstock E; Donoghue JP; Black MJ
    Neural Comput; 2006 Jan; 18(1):80-118. PubMed ID: 16354382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Concurrent adaptation of force and impedance in the redundant muscle system.
    Tee KP; Franklin DW; Kawato M; Milner TE; Burdet E
    Biol Cybern; 2010 Jan; 102(1):31-44. PubMed ID: 19936778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.