BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

280 related articles for article (PubMed ID: 30605679)

  • 1. SUMOylation and the HSF1-Regulated Chaperone Network Converge to Promote Proteostasis in Response to Heat Shock.
    Liebelt F; Sebastian RM; Moore CL; Mulder MPC; Ovaa H; Shoulders MD; Vertegaal ACO
    Cell Rep; 2019 Jan; 26(1):236-249.e4. PubMed ID: 30605679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of Hsf1 and the Heat Shock Response.
    Pincus D
    Adv Exp Med Biol; 2020; 1243():41-50. PubMed ID: 32297210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat shock transcription factor 1 is SUMOylated in the activated trimeric state.
    Kmiecik SW; Drzewicka K; Melchior F; Mayer MP
    J Biol Chem; 2021; 296():100324. PubMed ID: 33493517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-specific characterization of endogenous SUMOylation across species and organs.
    Hendriks IA; Lyon D; Su D; Skotte NH; Daniel JA; Jensen LJ; Nielsen ML
    Nat Commun; 2018 Jun; 9(1):2456. PubMed ID: 29942033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylation of SUMO2 at lysine 11 favors the formation of non-canonical SUMO chains.
    Gärtner A; Wagner K; Hölper S; Kunz K; Rodriguez MS; Müller S
    EMBO Rep; 2018 Nov; 19(11):. PubMed ID: 30201799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hsf1 on a leash - controlling the heat shock response by chaperone titration.
    Masser AE; Ciccarelli M; Andréasson C
    Exp Cell Res; 2020 Nov; 396(1):112246. PubMed ID: 32861670
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response.
    Lang BJ; Guerrero ME; Prince TL; Okusha Y; Bonorino C; Calderwood SK
    Arch Toxicol; 2021 Jun; 95(6):1943-1970. PubMed ID: 34003342
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The heat-shock, or HSF1-mediated proteotoxic stress, response in cancer: from proteomic stability to oncogenesis.
    Dai C
    Philos Trans R Soc Lond B Biol Sci; 2018 Jan; 373(1738):. PubMed ID: 29203710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteome-wide analysis of SUMO2 targets in response to pathological DNA replication stress in human cells.
    Bursomanno S; Beli P; Khan AM; Minocherhomji S; Wagner SA; Bekker-Jensen S; Mailand N; Choudhary C; Hickson ID; Liu Y
    DNA Repair (Amst); 2015 Jan; 25():84-96. PubMed ID: 25497329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibiting ubiquitination causes an accumulation of SUMOylated newly synthesized nuclear proteins at PML bodies.
    Sha Z; Blyszcz T; González-Prieto R; Vertegaal ACO; Goldberg AL
    J Biol Chem; 2019 Oct; 294(42):15218-15234. PubMed ID: 31285264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HSF1: Primary Factor in Molecular Chaperone Expression and a Major Contributor to Cancer Morbidity.
    Prince TL; Lang BJ; Guerrero-Gimenez ME; Fernandez-Muñoz JM; Ackerman A; Calderwood SK
    Cells; 2020 Apr; 9(4):. PubMed ID: 32331382
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HSF1 Activation Can Restrict HIV Replication.
    Nekongo EE; Ponomarenko AI; Dewal MB; Butty VL; Browne EP; Shoulders MD
    ACS Infect Dis; 2020 Jul; 6(7):1659-1666. PubMed ID: 32502335
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SUMOylation modulates eIF5A activities in both yeast and pancreatic ductal adenocarcinoma cells.
    Seoane R; Lama-Díaz T; Romero AM; El Motiam A; Martínez-Férriz A; Vidal S; Bouzaher YH; Blanquer M; Tolosa RM; Castillo Mewa J; Rodríguez MS; García-Sastre A; Xirodimas D; Sutherland JD; Barrio R; Alepuz P; Blanco MG; Farràs R; Rivas C
    Cell Mol Biol Lett; 2024 Jan; 29(1):15. PubMed ID: 38229033
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Poly(ADP-Ribose) Polymerase 1 Promotes the Human Heat Shock Response by Facilitating Heat Shock Transcription Factor 1 Binding to DNA.
    Fujimoto M; Takii R; Katiyar A; Srivastava P; Nakai A
    Mol Cell Biol; 2018 Jul; 38(13):. PubMed ID: 29661921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SUMOylation of HSP27 by small ubiquitin-like modifier 2/3 promotes proliferation and invasion of hepatocellular carcinoma cells.
    Ge H; Du J; Xu J; Meng X; Tian J; Yang J; Liang H
    Cancer Biol Ther; 2017 Aug; 18(8):552-559. PubMed ID: 28665748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rethinking HSF1 in Stress, Development, and Organismal Health.
    Li J; Labbadia J; Morimoto RI
    Trends Cell Biol; 2017 Dec; 27(12):895-905. PubMed ID: 28890254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SUMO-2/3 conjugates accumulating under heat shock or MG132 treatment result largely from new protein synthesis.
    Castorálová M; Březinová D; Svéda M; Lipov J; Ruml T; Knejzlík Z
    Biochim Biophys Acta; 2012 Apr; 1823(4):911-9. PubMed ID: 22306003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat shock protein 27 is involved in SUMO-2/3 modification of heat shock factor 1 and thereby modulates the transcription factor activity.
    Brunet Simioni M; De Thonel A; Hammann A; Joly AL; Bossis G; Fourmaux E; Bouchot A; Landry J; Piechaczyk M; Garrido C
    Oncogene; 2009 Sep; 28(37):3332-44. PubMed ID: 19597476
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient global cerebral ischemia induces a massive increase in protein sumoylation.
    Yang W; Sheng H; Warner DS; Paschen W
    J Cereb Blood Flow Metab; 2008 Feb; 28(2):269-79. PubMed ID: 17565359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monitoring of the Heat Shock Response with a Real-Time Luciferase Reporter.
    Kijima T; Eguchi T; Neckers L; Prince TL
    Methods Mol Biol; 2018; 1709():35-45. PubMed ID: 29177649
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.