BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

620 related articles for article (PubMed ID: 30605723)

  • 1. It's all about tau.
    Tapia-Rojas C; Cabezas-Opazo F; Deaton CA; Vergara EH; Johnson GVW; Quintanilla RA
    Prog Neurobiol; 2019 Apr; 175():54-76. PubMed ID: 30605723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tau phosphorylation in neuronal cell function and dysfunction.
    Johnson GV; Stoothoff WH
    J Cell Sci; 2004 Nov; 117(Pt 24):5721-9. PubMed ID: 15537830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of tau protein in both physiological and pathological conditions.
    Avila J; Lucas JJ; Perez M; Hernandez F
    Physiol Rev; 2004 Apr; 84(2):361-84. PubMed ID: 15044677
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Why kiss-and-hop explains that tau does not stabilize microtubules and does not interfere with axonal transport (at physiological conditions).
    Bakota L; Brandt R
    Cytoskeleton (Hoboken); 2024 Jan; 81(1):47-52. PubMed ID: 37694806
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hyperphosphorylation of Tau Associates With Changes in Its Function Beyond Microtubule Stability.
    Alonso AD; Cohen LS; Corbo C; Morozova V; ElIdrissi A; Phillips G; Kleiman FE
    Front Cell Neurosci; 2018; 12():338. PubMed ID: 30356756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Normal and pathological Tau proteins as factors for microtubule assembly.
    Delacourte A; Buée L
    Int Rev Cytol; 1997; 171():167-224. PubMed ID: 9066128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biochemistry of Tau in Alzheimer's disease and related neurological disorders.
    Sergeant N; Bretteville A; Hamdane M; Caillet-Boudin ML; Grognet P; Bombois S; Blum D; Delacourte A; Pasquier F; Vanmechelen E; Schraen-Maschke S; Buée L
    Expert Rev Proteomics; 2008 Apr; 5(2):207-24. PubMed ID: 18466052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Post-translational modifications of tau protein.
    Pevalova M; Filipcik P; Novak M; Avila J; Iqbal K
    Bratisl Lek Listy; 2006; 107(9-10):346-53. PubMed ID: 17262986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of neuronal microtubule dynamics by tau: Implications for tauopathies.
    Venkatramani A; Panda D
    Int J Biol Macromol; 2019 Jul; 133():473-483. PubMed ID: 31004638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative analysis of MAP-mediated regulation of microtubule dynamic instability in vitro focus on Tau.
    Kiris E; Ventimiglia D; Feinstein SC
    Methods Cell Biol; 2010; 95():481-503. PubMed ID: 20466149
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The balance between tau protein's microtubule growth and nucleation activities: implications for the formation of axonal microtubules.
    Brandt R; Lee G
    J Neurochem; 1993 Sep; 61(3):997-1005. PubMed ID: 8360696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of tau phosphorylation in the pathogenesis of Alzheimer's disease.
    Mi K; Johnson GV
    Curr Alzheimer Res; 2006 Dec; 3(5):449-63. PubMed ID: 17168644
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The physiology and pathology of microtubule-associated protein tau.
    Wang JZ; Gao X; Wang ZH
    Essays Biochem; 2014; 56():111-23. PubMed ID: 25131590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microtubule-associated protein tau in development, degeneration and protection of neurons.
    Wang JZ; Liu F
    Prog Neurobiol; 2008 Jun; 85(2):148-75. PubMed ID: 18448228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systemic and network functions of the microtubule-associated protein tau: Implications for tau-based therapies.
    Bakota L; Ussif A; Jeserich G; Brandt R
    Mol Cell Neurosci; 2017 Oct; 84():132-141. PubMed ID: 28318914
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inability of tau to properly regulate neuronal microtubule dynamics: a loss-of-function mechanism by which tau might mediate neuronal cell death.
    Feinstein SC; Wilson L
    Biochim Biophys Acta; 2005 Jan; 1739(2-3):268-79. PubMed ID: 15615645
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The microtubule-associated protein tau in neurodegenerative diseases. Tauopathies].
    Sánchez MP; Alvarez-Tallada V; Avila J
    Rev Neurol; 2001 Jul 16-31; 33(2):169-77. PubMed ID: 11562878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Altered microtubule organization in small-calibre axons of mice lacking tau protein.
    Harada A; Oguchi K; Okabe S; Kuno J; Terada S; Ohshima T; Sato-Yoshitake R; Takei Y; Noda T; Hirokawa N
    Nature; 1994 Jun; 369(6480):488-91. PubMed ID: 8202139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tau protein function in axonal formation.
    Paglini G; Peris L; Mascotti F; Quiroga S; Caceres A
    Neurochem Res; 2000 Jan; 25(1):37-42. PubMed ID: 10685602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Going new places using an old MAP: tau, microtubules and human neurodegenerative disease.
    Garcia ML; Cleveland DW
    Curr Opin Cell Biol; 2001 Feb; 13(1):41-8. PubMed ID: 11163132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.