These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
336 related articles for article (PubMed ID: 30606550)
1. Improvement of calcium phosphate scaffold osteogenesis in vitro via combination of glutamate-modified BMP-2 peptides. Cao Q; He Z; Sun WQ; Fan G; Zhao J; Bao N; Ye T Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():412-418. PubMed ID: 30606550 [TBL] [Abstract][Full Text] [Related]
2. Comparative study of osteogenic potential of a composite scaffold incorporating either endogenous bone morphogenetic protein-2 or exogenous phytomolecule icaritin: an in vitro efficacy study. Chen SH; Wang XL; Xie XH; Zheng LZ; Yao D; Wang DP; Leng Y; Zhang G; Qin L Acta Biomater; 2012 Aug; 8(8):3128-37. PubMed ID: 22543006 [TBL] [Abstract][Full Text] [Related]
3. Three-dimensional electrospun nanofibrous scaffolds displaying bone morphogenetic protein-2-derived peptides for the promotion of osteogenic differentiation of stem cells and bone regeneration. Ye K; Liu D; Kuang H; Cai J; Chen W; Sun B; Xia L; Fang B; Morsi Y; Mo X J Colloid Interface Sci; 2019 Jan; 534():625-636. PubMed ID: 30265990 [TBL] [Abstract][Full Text] [Related]
4. Factors of osteogenesis influencing various human stem cells on third-generation gelatin/β-tricalcium phosphate scaffold material. Weinand C; Nabili A; Khumar M; Dunn JR; Ramella-Roman J; Jeng JC; Jordan MH; Tabata Y Rejuvenation Res; 2011 Apr; 14(2):185-94. PubMed ID: 21235414 [TBL] [Abstract][Full Text] [Related]
5. Ectopic osteogenesis by ex vivo gene therapy using beta tricalcium phosphate as a carrier. Han D; Sun X; Zhang X; Tang T; Dai K Connect Tissue Res; 2008; 49(5):343-50. PubMed ID: 18991087 [TBL] [Abstract][Full Text] [Related]
6. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935 [TBL] [Abstract][Full Text] [Related]
7. Microsphere-based scaffolds encapsulating tricalcium phosphate and hydroxyapatite for bone regeneration. Gupta V; Lyne DV; Barragan M; Berkland CJ; Detamore MS J Mater Sci Mater Med; 2016 Jul; 27(7):121. PubMed ID: 27272903 [TBL] [Abstract][Full Text] [Related]
8. PLGA/β-TCP composite scaffold incorporating salvianolic acid B promotes bone fusion by angiogenesis and osteogenesis in a rat spinal fusion model. Lin S; Cui L; Chen G; Huang J; Yang Y; Zou K; Lai Y; Wang X; Zou L; Wu T; Cheng JCY; Li G; Wei B; Lee WYW Biomaterials; 2019 Mar; 196():109-121. PubMed ID: 29655516 [TBL] [Abstract][Full Text] [Related]
9. Tissue-engineered bone formation using human bone marrow stromal cells and novel beta-tricalcium phosphate. Liu G; Zhao L; Cui L; Liu W; Cao Y Biomed Mater; 2007 Jun; 2(2):78-86. PubMed ID: 18458439 [TBL] [Abstract][Full Text] [Related]
10. Ectopic bone regeneration by human bone marrow mononucleated cells, undifferentiated and osteogenically differentiated bone marrow mesenchymal stem cells in beta-tricalcium phosphate scaffolds. Ye X; Yin X; Yang D; Tan J; Liu G Tissue Eng Part C Methods; 2012 Jul; 18(7):545-56. PubMed ID: 22250840 [TBL] [Abstract][Full Text] [Related]
11. Low temperature hybrid 3D printing of hierarchically porous bone tissue engineering scaffolds with Lai J; Wang C; Liu J; Chen S; Liu C; Huang X; Wu J; Pan Y; Xie Y; Wang M Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35896092 [TBL] [Abstract][Full Text] [Related]
12. PEGylated poly(glycerol sebacate)-modified calcium phosphate scaffolds with desirable mechanical behavior and enhanced osteogenic capacity. Ma Y; Zhang W; Wang Z; Wang Z; Xie Q; Niu H; Guo H; Yuan Y; Liu C Acta Biomater; 2016 Oct; 44():110-24. PubMed ID: 27544808 [TBL] [Abstract][Full Text] [Related]
13. Bone forming capacity of cell- and growth factor-based constructs at different ectopic implantation sites. Ma J; Yang F; Both SK; Prins HJ; Helder MN; Pan J; Cui FZ; Jansen JA; van den Beucken JJ J Biomed Mater Res A; 2015 Feb; 103(2):439-50. PubMed ID: 24737694 [TBL] [Abstract][Full Text] [Related]
14. Influence of the pore size and porosity of selective laser melted Ti6Al4V ELI porous scaffold on cell proliferation, osteogenesis and bone ingrowth. Chen Z; Yan X; Yin S; Liu L; Liu X; Zhao G; Ma W; Qi W; Ren Z; Liao H; Liu M; Cai D; Fang H Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110289. PubMed ID: 31753386 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of polycaprolactone-silanated β-tricalcium phosphate-heparan sulfate scaffolds for spinal fusion applications. Bhakta G; Ekaputra AK; Rai B; Abbah SA; Tan TC; Le BQ; Chatterjea A; Hu T; Lin T; Arafat MT; van Wijnen AJ; Goh J; Nurcombe V; Bhakoo K; Birch W; Xu L; Gibson I; Wong HK; Cool SM Spine J; 2018 May; 18(5):818-830. PubMed ID: 29269312 [TBL] [Abstract][Full Text] [Related]
16. Cryogenic 3D printing for producing hierarchical porous and rhBMP-2-loaded Ca-P/PLLA nanocomposite scaffolds for bone tissue engineering. Wang C; Zhao Q; Wang M Biofabrication; 2017 Jun; 9(2):025031. PubMed ID: 28589918 [TBL] [Abstract][Full Text] [Related]
17. [A novel tissue-engineered bone constructed by using human adipose-derived stem cells and biomimetic calcium phosphate scaffold coprecipitated with bone morphogenetic protein-2]. Jiang WR; Zhang X; Liu YS; Wu G; Ge YJ; Zhou YS Beijing Da Xue Xue Bao Yi Xue Ban; 2017 Feb; 49(1):6-15. PubMed ID: 28202997 [TBL] [Abstract][Full Text] [Related]
18. Incorporation of dexamethasone-loaded mesoporous silica nanoparticles into mineralized porous biocomposite scaffolds for improving osteogenic activity. Zhou X; Liu P; Nie W; Peng C; Li T; Qiang L; He C; Wang J Int J Biol Macromol; 2020 Apr; 149():116-126. PubMed ID: 31987948 [TBL] [Abstract][Full Text] [Related]
19. [Study on cytotoxicity of three-dimensional printed β-tricalcium phosphate loaded poly (lactide-co-glycolide) anti-tuberculosis drug sustained release microspheres and its effect on osteogenic differentiation of bone marrow mesenchymal stem cells]. Gong D; Ma Y; Yang X; Xie W; Shao L; Zhen P Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Sep; 32(9):1131-1136. PubMed ID: 30129348 [TBL] [Abstract][Full Text] [Related]
20. Creation of bony microenvironment with CaP and cell-derived ECM to enhance human bone-marrow MSC behavior and delivery of BMP-2. Kang Y; Kim S; Khademhosseini A; Yang Y Biomaterials; 2011 Sep; 32(26):6119-30. PubMed ID: 21632105 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]