These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30606585)

  • 1. Mechanical and tribological properties of the tricalcium phosphate - magnesium oxide composites.
    Trabelsi M; AlShahrani I; Algarni H; Ben Ayed F; Yousef ES
    Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():716-729. PubMed ID: 30606585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sintering and the mechanical properties of the tricalcium phosphate-titania composites.
    Ayadi I; Ben Ayed F
    J Mech Behav Biomed Mater; 2015 Sep; 49():129-40. PubMed ID: 26005844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical optimization of the composite biomaterial based on the tricalcium phosphate, titania and magnesium fluoride.
    Ayadi I; Ayed FB
    J Mech Behav Biomed Mater; 2016 Jul; 60():568-580. PubMed ID: 27058004
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sintering and mechanical properties of the alumina-tricalcium phosphate-titania composites.
    Sakka S; Bouaziz J; Ben Ayed F
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():92-101. PubMed ID: 24857470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Mg and Si co-substitution on microstructure and strength of tricalcium phosphate ceramics.
    García-Páez IH; Carrodeguas RG; De Aza AH; Baudín C; Pena P
    J Mech Behav Biomed Mater; 2014 Feb; 30():1-15. PubMed ID: 24216308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of fluorapatite additive on densification and mechanical properties of tricalcium phosphate.
    Bouslama N; Ben Ayed F; Bouaziz J
    J Mech Behav Biomed Mater; 2010 Jan; 3(1):2-13. PubMed ID: 19878897
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructure and biocompatibility of composite biomaterials fabricated from titanium and tricalcium phosphate by spark plasma sintering.
    Mondal D; Nguyen L; Oh IH; Lee BT
    J Biomed Mater Res A; 2013 May; 101(5):1489-501. PubMed ID: 23135893
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High strength, biodegradable and cytocompatible alpha tricalcium phosphate-iron composites for temporal reduction of bone fractures.
    Montufar EB; Casas-Luna M; Horynová M; Tkachenko S; Fohlerová Z; Diaz-de-la-Torre S; Dvořák K; Čelko L; Kaiser J
    Acta Biomater; 2018 Apr; 70():293-303. PubMed ID: 29432984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Composite bone substitute materials based on beta-tricalcium phosphate and magnesium-containing sol-gel derived bioactive glass.
    Hesaraki S; Safari M; Shokrgozar MA
    J Mater Sci Mater Med; 2009 Oct; 20(10):2011-7. PubMed ID: 19466530
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the mechanical properties of hot isostatically pressed titania and titania-calcium phosphate composites.
    Li J; Forberg S; Hermansson L
    Biomaterials; 1991 May; 12(4):438-40. PubMed ID: 1888813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sintering of calcium phosphate bioceramics.
    Champion E
    Acta Biomater; 2013 Apr; 9(4):5855-75. PubMed ID: 23212081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure, mechanical, corrosion properties and cytotoxicity of beta‑calcium polyphosphate reinforced ZK61 magnesium alloy composite by spark plasma sintering.
    Cui Z; Zhang Y; Cheng Y; Gong D; Wang W
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():1035-1047. PubMed ID: 30889636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and physical properties of tricalcium phosphate laminates for bone-tissue engineering.
    Tanimoto Y; Nishiyama N
    J Biomed Mater Res A; 2008 May; 85(2):427-33. PubMed ID: 17701974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of beta-TCP ceramics.
    Banerjee SS; Tarafder S; Davies NM; Bandyopadhyay A; Bose S
    Acta Biomater; 2010 Oct; 6(10):4167-74. PubMed ID: 20493283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical properties of experimental composites with different calcium phosphates fillers.
    Okulus Z; Voelkel A
    Mater Sci Eng C Mater Biol Appl; 2017 Sep; 78():1101-1108. PubMed ID: 28575945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding in vivo response and mechanical property variation in MgO, SrO and SiO₂ doped β-TCP.
    Bose S; Tarafder S; Banerjee SS; Davies NM; Bandyopadhyay A
    Bone; 2011 Jun; 48(6):1282-90. PubMed ID: 21419884
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and mechanical behavior of β-tricalcium phosphate/titania composites addressed to regeneration of long bone segments.
    Sprio S; Guicciardi S; Dapporto M; Melandri C; Tampieri A
    J Mech Behav Biomed Mater; 2013 Jan; 17():1-10. PubMed ID: 23122887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of magnesium oxide and strontium oxide as modifiers in silicate-based bioactive glasses: Effects on thermal behaviour, mechanical properties and in-vitro bioactivity.
    Bellucci D; Sola A; Salvatori R; Anesi A; Chiarini L; Cannillo V
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():566-575. PubMed ID: 28024623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of powder properties on sintering, microstructure, mechanical strength and degradability of beta-tricalcium phosphate/calcium silicate composite bioceramics.
    Lin K; Chang J; Shen R
    Biomed Mater; 2009 Dec; 4(6):065009. PubMed ID: 19966383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical properties of polymer-infiltrated-ceramic (sodium aluminum silicate) composites for dental restoration.
    Cui B; Li J; Wang H; Lin Y; Shen Y; Li M; Deng X; Nan C
    J Dent; 2017 Jul; 62():91-97. PubMed ID: 28526443
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.