BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 30606598)

  • 41. Injectable stem cell-laden supramolecular hydrogels enhance in situ osteochondral regeneration via the sustained co-delivery of hydrophilic and hydrophobic chondrogenic molecules.
    Xu J; Feng Q; Lin S; Yuan W; Li R; Li J; Wei K; Chen X; Zhang K; Yang Y; Wu T; Wang B; Zhu M; Guo R; Li G; Bian L
    Biomaterials; 2019 Jul; 210():51-61. PubMed ID: 31075723
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Tubular scaffold with microchannels and an H-shaped lumen loaded with bone marrow stromal cells promotes neuroregeneration and inhibits apoptosis after spinal cord injury.
    Chen X; Wu J; Sun R; Zhao Y; Li Y; Pan J; Chen Y; Wang X
    J Tissue Eng Regen Med; 2020 Mar; 14(3):397-411. PubMed ID: 31821733
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multivalent ion-based in situ gelling polysaccharide hydrogel as an injectable bone graft.
    Jung SW; Byun JH; Oh SH; Kim TH; Park JS; Rho GJ; Lee JH
    Carbohydr Polym; 2018 Jan; 180():216-225. PubMed ID: 29103499
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Enzyme-mediated hyaluronic acid-tyramine hydrogels for the propagation of human embryonic stem cells in 3D.
    Xu K; Narayanan K; Lee F; Bae KH; Gao S; Kurisawa M
    Acta Biomater; 2015 Sep; 24():159-71. PubMed ID: 26112373
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transplantation of BDNF Gene Recombinant Mesenchymal Stem Cells and Adhesive Peptide-modified Hydrogel Scaffold for Spinal Cord Repair.
    Li LM; Huang LL; Jiang XC; Chen JC; OuYang HW; Gao JQ
    Curr Gene Ther; 2018; 18(1):29-39. PubMed ID: 29651947
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Application of Bone Marrow-Derived Macrophages Combined with Bone Mesenchymal Stem Cells in Dual-Channel Three-Dimensional Bioprinting Scaffolds for Early Immune Regulation and Osteogenic Induction in Rat Calvarial Defects.
    Yu K; Huangfu H; Qin Q; Zhang Y; Gu X; Liu X; Zhang Y; Zhou Y
    ACS Appl Mater Interfaces; 2022 Oct; 14(41):47052-47065. PubMed ID: 36194837
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 3D-bioprinting a genetically inspired cartilage scaffold with GDF5-conjugated BMSC-laden hydrogel and polymer for cartilage repair.
    Sun Y; You Y; Jiang W; Zhai Z; Dai K
    Theranostics; 2019; 9(23):6949-6961. PubMed ID: 31660079
    [No Abstract]   [Full Text] [Related]  

  • 48. In vivo and in vitro study of osteogenic potency of endothelin-1 on bone marrow-derived mesenchymal stem cells.
    Hu LW; Wang X; Jiang XQ; Xu LQ; Pan HY
    Exp Cell Res; 2017 Aug; 357(1):25-32. PubMed ID: 28432001
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An injectable click-crosslinked hyaluronic acid hydrogel modified with a BMP-2 mimetic peptide as a bone tissue engineering scaffold.
    Park SH; Park JY; Ji YB; Ju HJ; Min BH; Kim MS
    Acta Biomater; 2020 Nov; 117():108-120. PubMed ID: 32927087
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Injectable and tunable hyaluronic acid hydrogels releasing chemotactic and angiogenic growth factors for endodontic regeneration.
    Silva CR; Babo PS; Gulino M; Costa L; Oliveira JM; Silva-Correia J; Domingues RMA; Reis RL; Gomes ME
    Acta Biomater; 2018 Sep; 77():155-171. PubMed ID: 30031163
    [TBL] [Abstract][Full Text] [Related]  

  • 51. In vitro response of the bone marrow-derived mesenchymal stem cells seeded in a type-I collagen-glycosaminoglycan scaffold for skin wound repair under the mechanical loading condition.
    Kobayashi M; Spector M
    Mol Cell Biomech; 2009 Dec; 6(4):217-27. PubMed ID: 19899445
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Improving PEEK bioactivity for craniofacial reconstruction using a 3D printed scaffold embedded with mesenchymal stem cells.
    Roskies M; Jordan JO; Fang D; Abdallah MN; Hier MP; Mlynarek A; Tamimi F; Tran SD
    J Biomater Appl; 2016 Jul; 31(1):132-9. PubMed ID: 26980549
    [TBL] [Abstract][Full Text] [Related]  

  • 53. RNA interfering molecule delivery from in situ forming biodegradable hydrogels for enhancement of bone formation in rat calvarial bone defects.
    Nguyen MK; Jeon O; Dang PN; Huynh CT; Varghai D; Riazi H; McMillan A; Herberg S; Alsberg E
    Acta Biomater; 2018 Jul; 75():105-114. PubMed ID: 29885529
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Polymeric Gelatin Scaffolds Affect Mesenchymal Stem Cell Differentiation and Its Diverse Applications in Tissue Engineering.
    Wang CY; Hong PD; Wang DH; Cherng JH; Chang SJ; Liu CC; Fang TJ; Wang YW
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33207764
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Photobiomodulation of mesenchymal stem cells encapsulated in an injectable rhBMP4-loaded hydrogel directs hard tissue bioengineering.
    Diniz IMA; Carreira ACO; Sipert CR; Uehara CM; Moreira MSN; Freire L; Pelissari C; Kossugue PM; de Araújo DR; Sogayar MC; Marques MM
    J Cell Physiol; 2018 Jun; 233(6):4907-4918. PubMed ID: 29215714
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Injectable and bioactive methylcellulose hydrogel carrying bone mesenchymal stem cells as a filler for critical-size defects with enhanced bone regeneration.
    Deng L; Liu Y; Yang L; Yi JZ; Deng F; Zhang LM
    Colloids Surf B Biointerfaces; 2020 Oct; 194():111159. PubMed ID: 32534367
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Repair of Calvarial Bone Defect Using Jarid1a-Knockdown Bone Mesenchymal Stem Cells in Rats.
    Deng Y; Guo T; Li J; Guo L; Gu P; Fan X
    Tissue Eng Part A; 2018 May; 24(9-10):711-718. PubMed ID: 28903624
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Enhanced osseointegration of three-dimensional supramolecular bioactive interface through osteoporotic microenvironment regulation.
    Bai H; Zhao Y; Wang C; Wang Z; Wang J; Liu H; Feng Y; Lin Q; Li Z; Liu H
    Theranostics; 2020; 10(11):4779-4794. PubMed ID: 32308749
    [No Abstract]   [Full Text] [Related]  

  • 59. An Innovative Approach for Enhancing Bone Defect Healing Using PLGA Scaffolds Seeded with Extracorporeal-shock-wave-treated Bone Marrow Mesenchymal Stem Cells (BMSCs).
    Chen Y; Xu J; Huang Z; Yu M; Zhang Y; Chen H; Ma Z; Liao H; Hu J
    Sci Rep; 2017 Mar; 7():44130. PubMed ID: 28272494
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calcium-phosphate ceramics and polysaccharide-based hydrogel scaffolds combined with mesenchymal stem cell differently support bone repair in rats.
    Frasca S; Norol F; Le Visage C; Collombet JM; Letourneur D; Holy X; Sari Ali E
    J Mater Sci Mater Med; 2017 Feb; 28(2):35. PubMed ID: 28110459
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.