These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30606606)

  • 1. Importance of crosslinking strategies in designing smart biomaterials for bone tissue engineering: A systematic review.
    Krishnakumar GS; Sampath S; Muthusamy S; John MA
    Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():941-954. PubMed ID: 30606606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical crosslinking of biopolymeric scaffolds: Current knowledge and future directions of crosslinked engineered bone scaffolds.
    Oryan A; Kamali A; Moshiri A; Baharvand H; Daemi H
    Int J Biol Macromol; 2018 Feb; 107(Pt A):678-688. PubMed ID: 28919526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crosslinking biopolymers for biomedical applications.
    Reddy N; Reddy R; Jiang Q
    Trends Biotechnol; 2015 Jun; 33(6):362-9. PubMed ID: 25887334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair.
    Tandon B; Blaker JJ; Cartmell SH
    Acta Biomater; 2018 Jun; 73():1-20. PubMed ID: 29673838
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of different crosslinking agents on hybrid biomimetic collagen-hydroxyapatite composites for regenerative medicine.
    Krishnakumar GS; Gostynska N; Dapporto M; Campodoni E; Montesi M; Panseri S; Tampieri A; Kon E; Marcacci M; Sprio S; Sandri M
    Int J Biol Macromol; 2018 Jan; 106():739-748. PubMed ID: 28827204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applied Induced Pluripotent Stem Cells in Combination With Biomaterials in Bone Tissue Engineering.
    Ardeshirylajimi A
    J Cell Biochem; 2017 Oct; 118(10):3034-3042. PubMed ID: 28316107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights on Chemical Crosslinking Strategies for Proteins.
    Jayachandran B; Parvin TN; Alam MM; Chanda K; Mm B
    Molecules; 2022 Nov; 27(23):. PubMed ID: 36500216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Application of genipin for modification of natural biomaterials as a crosslinking agent].
    Wang M; Da L; Xie Y; Xie H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 May; 27(5):580-5. PubMed ID: 23879096
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chitosan membranes for tissue engineering: comparison of different crosslinkers.
    Ruini F; Tonda-Turo C; Chiono V; Ciardelli G
    Biomed Mater; 2015 Nov; 10(6):065002. PubMed ID: 26526195
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design strategies and applications of nacre-based biomaterials.
    Gerhard EM; Wang W; Li C; Guo J; Ozbolat IT; Rahn KM; Armstrong AD; Xia J; Qian G; Yang J
    Acta Biomater; 2017 May; 54():21-34. PubMed ID: 28274766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions.
    Duan X; Sheardown H
    Biomaterials; 2006 Sep; 27(26):4608-17. PubMed ID: 16713624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical Crosslinking: Role in Protein and Peptide Science.
    Arora B; Tandon R; Attri P; Bhatia R
    Curr Protein Pept Sci; 2017; 18(9):946-955. PubMed ID: 27455969
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progress in various crosslinking modification for acellular matrix.
    Yang H; Tan Q; Zhao H
    Chin Med J (Engl); 2014; 127(17):3156-64. PubMed ID: 25189963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective.
    Hutmacher DW; Schantz JT; Lam CX; Tan KC; Lim TC
    J Tissue Eng Regen Med; 2007; 1(4):245-60. PubMed ID: 18038415
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crosslinkers for polysaccharides and proteins: Synthesis conditions, mechanisms, and crosslinking efficiency, a review.
    Alavarse AC; Frachini ECG; da Silva RLCG; Lima VH; Shavandi A; Petri DFS
    Int J Biol Macromol; 2022 Mar; 202():558-596. PubMed ID: 35038469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon nanotubes: directions and perspectives in oral regenerative medicine.
    Martins-Júnior PA; Alcântara CE; Resende RR; Ferreira AJ
    J Dent Res; 2013 Jul; 92(7):575-83. PubMed ID: 23677650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical Functionalization of Polysaccharides-Towards Biocompatible Hydrogels for Biomedical Applications.
    Kirschning A; Dibbert N; Dräger G
    Chemistry; 2018 Jan; 24(6):1231-1240. PubMed ID: 28804933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydroxyapatite-titanium bulk composites for bone tissue engineering applications.
    Kumar A; Biswas K; Basu B
    J Biomed Mater Res A; 2015 Feb; 103(2):791-806. PubMed ID: 24737723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effects of crosslinkers on physical, mechanical, and cytotoxic properties of gelatin sponge prepared via in-situ gas foaming method as a tissue engineering scaffold.
    Poursamar SA; Lehner AN; Azami M; Ebrahimi-Barough S; Samadikuchaksaraei A; Antunes AP
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():1-9. PubMed ID: 27040189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of hydroxyapatite for biomedical applications.
    Szcześ A; Hołysz L; Chibowski E
    Adv Colloid Interface Sci; 2017 Nov; 249():321-330. PubMed ID: 28457501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.