BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 30606624)

  • 1. The ion channels and synapses responsible for the physiological diversity of mammalian lower brainstem auditory neurons.
    Leão RM
    Hear Res; 2019 May; 376():33-46. PubMed ID: 30606624
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synaptic Inhibition of Medial Olivocochlear Efferent Neurons by Neurons of the Medial Nucleus of the Trapezoid Body.
    Torres Cadenas L; Fischl MJ; Weisz CJC
    J Neurosci; 2020 Jan; 40(3):509-525. PubMed ID: 31719165
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The multiple functions of T stellate/multipolar/chopper cells in the ventral cochlear nucleus.
    Oertel D; Wright S; Cao XJ; Ferragamo M; Bal R
    Hear Res; 2011 Jun; 276(1-2):61-9. PubMed ID: 21056098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of the timing of MNTB neurons by short-term and long-term modulation of potassium channels.
    Kaczmarek LK; Bhattacharjee A; Desai R; Gan L; Song P; von Hehn CA; Whim MD; Yang B
    Hear Res; 2005 Aug; 206(1-2):133-45. PubMed ID: 16081004
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Early development of intrinsic and synaptic properties of chicken nucleus laminaris neurons.
    Gao H; Lu Y
    Neuroscience; 2008 Apr; 153(1):131-43. PubMed ID: 18355968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsic physiological properties underlie auditory response diversity in the avian cochlear nucleus.
    Brown DH; Hyson RL
    J Neurophysiol; 2019 Mar; 121(3):908-927. PubMed ID: 30649984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Perfidious synaptic transmission in the guinea-pig auditory brainstem.
    Stasiak A; Sayles M; Winter IM
    PLoS One; 2018; 13(10):e0203712. PubMed ID: 30286113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression of the Kv1.1 ion channel subunit in the auditory brainstem of the big brown bat, Eptesicus fuscus.
    Rosenberger MH; Fremouw T; Casseday JH; Covey E
    J Comp Neurol; 2003 Jul; 462(1):101-20. PubMed ID: 12761827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Maturation of synaptic transmission at end-bulb synapses of the cochlear nucleus.
    Brenowitz S; Trussell LO
    J Neurosci; 2001 Dec; 21(23):9487-98. PubMed ID: 11717383
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions of ion conductances to the onset responses of octopus cells in the ventral cochlear nucleus: simulation results.
    Cai Y; McGee J; Walsh EJ
    J Neurophysiol; 2000 Jan; 83(1):301-14. PubMed ID: 10634873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. KCNQ5 reaches synaptic endings in the auditory brainstem at hearing onset and targeting maintenance is activity-dependent.
    Garcia-Pino E; Caminos E; Juiz JM
    J Comp Neurol; 2010 Apr; 518(8):1301-14. PubMed ID: 20151361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Summation of spatiotemporal input patterns in leaky integrate-and-fire neurons: application to neurons in the cochlear nucleus receiving converging auditory nerve fiber input.
    Kuhlmann L; Burkitt AN; Paolini A; Clark GM
    J Comput Neurosci; 2002; 12(1):55-73. PubMed ID: 11932560
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Connexin36 expression in major centers of the auditory system in the CNS of mouse and rat: Evidence for neurons forming purely electrical synapses and morphologically mixed synapses.
    Rubio ME; Nagy JI
    Neuroscience; 2015 Sep; 303():604-29. PubMed ID: 26188286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increase of Kv3.1b expression in avian auditory brainstem neurons correlates with synaptogenesis in vivo and in vitro.
    Kuenzel T; Wirth MJ; Luksch H; Wagner H; Mey J
    Brain Res; 2009 Dec; 1302():64-75. PubMed ID: 19766604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrophysiological properties of ventral cochlear nucleus neurons of the dog.
    Bal R; Baydas G; Naziroglu M
    Hear Res; 2009 Oct; 256(1-2):93-103. PubMed ID: 19615433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Linear coding of complex sound spectra by discharge rate in neurons of the medial nucleus of the trapezoid body (MNTB) and its inputs.
    Koka K; Tollin DJ
    Front Neural Circuits; 2014; 8():144. PubMed ID: 25565971
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precisely timed inhibition facilitates action potential firing for spatial coding in the auditory brainstem.
    Beiderbeck B; Myoga MH; Müller NIC; Callan AR; Friauf E; Grothe B; Pecka M
    Nat Commun; 2018 May; 9(1):1771. PubMed ID: 29720589
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of human auditory brainstem circuits by calcium-binding protein immunohistochemistry.
    Kulesza RJ
    Neuroscience; 2014 Jan; 258():318-31. PubMed ID: 24291726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiate and Planar Multipolar Neurons of the Mouse Anteroventral Cochlear Nucleus: Intrinsic Excitability and Characterization of their Auditory Nerve Input.
    Xie R; Manis PB
    Front Neural Circuits; 2017; 11():77. PubMed ID: 29093666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of two high-threshold potassium channel subunits in the rat central auditory system.
    Li W; Kaczmarek LK; Perney TM
    J Comp Neurol; 2001 Aug; 437(2):196-218. PubMed ID: 11494252
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.