BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

270 related articles for article (PubMed ID: 30606991)

  • 21. Progressive age-dependence and frequency difference in the effect of gap junctions on active cochlear amplification and hearing.
    Zong L; Chen J; Zhu Y; Zhao HB
    Biochem Biophys Res Commun; 2017 Jul; 489(2):223-227. PubMed ID: 28552523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antioxidant treatment reduces blast-induced cochlear damage and hearing loss.
    Ewert DL; Lu J; Li W; Du X; Floyd R; Kopke R
    Hear Res; 2012 Mar; 285(1-2):29-39. PubMed ID: 22326291
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of outer hair cell electromotility by cochlear supporting cells and gap junctions.
    Yu N; Zhao HB
    PLoS One; 2009 Nov; 4(11):e7923. PubMed ID: 19936276
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Candidate's thesis: enhancing intrinsic cochlear stress defenses to reduce noise-induced hearing loss.
    Kopke RD; Coleman JK; Liu J; Campbell KC; Riffenburgh RH
    Laryngoscope; 2002 Sep; 112(9):1515-32. PubMed ID: 12352659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The endocochlear potential as an indicator of reticular lamina integrity after noise exposure in mice.
    Ohlemiller KK; Kaur T; Warchol ME; Withnell RH
    Hear Res; 2018 Apr; 361():138-151. PubMed ID: 29426600
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gingko biloba extracts protect auditory hair cells from cisplatin-induced ototoxicity by inhibiting perturbation of gap junctional intercellular communication.
    Choi SJ; Kim SW; Lee JB; Lim HJ; Kim YJ; Tian C; So HS; Park R; Choung YH
    Neuroscience; 2013 Aug; 244():49-61. PubMed ID: 23583760
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Noise-induced cochlear F-actin depolymerization is mediated via ROCK2/p-ERM signaling.
    Han Y; Wang X; Chen J; Sha SH
    J Neurochem; 2015 Jun; 133(5):617-28. PubMed ID: 25683353
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potassium ion recycling pathway via gap junction systems in the mammalian cochlea and its interruption in hereditary nonsyndromic deafness.
    Kikuchi T; Adams JC; Miyabe Y; So E; Kobayashi T
    Med Electron Microsc; 2000; 33(2):51-6. PubMed ID: 11810458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Inhibition of Cochlear HMGB1 Expression Attenuates Oxidative Stress and Inflammation in an Experimental Murine Model of Noise-Induced Hearing Loss.
    Shih CP; Kuo CY; Lin YY; Lin YC; Chen HK; Wang H; Chen HC; Wang CH
    Cells; 2021 Apr; 10(4):. PubMed ID: 33916471
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effects of acoustic environment after traumatic noise exposure on hearing and outer hair cells.
    Tanaka C; Chen GD; Hu BH; Chi LH; Li M; Zheng G; Bielefeld EC; Jamesdaniel S; Coling D; Henderson D
    Hear Res; 2009 Apr; 250(1-2):10-8. PubMed ID: 19450428
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of gap junctional intercellular communication within the lateral wall of the rat cochlea.
    Kelly JJ; Forge A; Jagger DJ
    Neuroscience; 2011 Apr; 180():360-9. PubMed ID: 21320575
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Attenuation of noise-induced hearing loss using methylene blue.
    Park JS; Jou I; Park SM
    Cell Death Dis; 2014 Apr; 5(4):e1200. PubMed ID: 24763057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Change in gene expression levels of GABA, glutamate and neurosteroid pathways due to acoustic trauma in the cochlea.
    Cerrah Gunes M; Gunes MS; Vural A; Aybuga F; Bayram A; Bayram KK; Sahin MI; Dogan ME; Ozdemir SY; Ozkul Y
    J Neurogenet; 2021 Mar; 35(1):45-57. PubMed ID: 33825593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Roles of Bak and Sirt3 in Paraquat-Induced Cochlear Hair Cell Damage.
    Ding D; Prolla T; Someya S; Manohar S; Salvi R
    Neurotox Res; 2021 Aug; 39(4):1227-1237. PubMed ID: 33900547
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of intense noise exposure on the outer hair cell plasma membrane fluidity.
    Chen GD; Zhao HB
    Hear Res; 2007 Apr; 226(1-2):14-21. PubMed ID: 16870367
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Acoustic trauma induces reemergence of the growth- and plasticity-associated protein GAP-43 in the rat auditory brainstem.
    Michler SA; Illing RB
    J Comp Neurol; 2002 Sep; 451(3):250-66. PubMed ID: 12210137
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resistance to neomycin ototoxicity in the extreme basal (hook) region of the mouse cochlea.
    Lin SCY; Thorne PR; Housley GD; Vlajkovic SM
    Histochem Cell Biol; 2018 Sep; 150(3):281-289. PubMed ID: 29862415
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efferent neurons control hearing sensitivity and protect hearing from noise through the regulation of gap junctions between cochlear supporting cells.
    Zhao HB; Liu LM; Yu N; Zhu Y; Mei L; Chen J; Liang C
    J Neurophysiol; 2022 Jan; 127(1):313-327. PubMed ID: 34907797
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Neuroprotective effects of cutamesine, a ligand of the sigma-1 receptor chaperone, against noise-induced hearing loss.
    Yamashita D; Sun GW; Cui Y; Mita S; Otsuki N; Kanzaki S; Nibu K; Ogawa K; Matsunaga T
    J Neurosci Res; 2015 May; 93(5):788-95. PubMed ID: 25612541
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GFAP aggregates in the cochlear nerve increase the noise vulnerability of sensory cells in the organ of Corti in the murine model of Alexander disease.
    Masuda M; Tanaka KF; Kanzaki S; Wakabayashi K; Oishi N; Suzuki T; Ikenaka K; Ogawa K
    Neurosci Res; 2008 Sep; 62(1):15-24. PubMed ID: 18602179
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.