BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 30607034)

  • 1. Comprehensive identification of RNA-protein interactions in any organism using orthogonal organic phase separation (OOPS).
    Queiroz RML; Smith T; Villanueva E; Marti-Solano M; Monti M; Pizzinga M; Mirea DM; Ramakrishna M; Harvey RF; Dezi V; Thomas GH; Willis AE; Lilley KS
    Nat Biotechnol; 2019 Feb; 37(2):169-178. PubMed ID: 30607034
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient recovery of the RNA-bound proteome and protein-bound transcriptome using phase separation (OOPS).
    Villanueva E; Smith T; Queiroz RML; Monti M; Pizzinga M; Elzek M; Dezi V; Harvey RF; Ramakrishna M; Willis AE; Lilley KS
    Nat Protoc; 2020 Aug; 15(8):2568-2588. PubMed ID: 32651564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome-Wide Identification of Coding and Noncoding RNA-Binding Proteins Defines the Comprehensive RNA Interactome of Leishmania mexicana.
    Kalesh K; Wei W; Mantilla BS; Roumeliotis TI; Choudhary J; Denny PW
    Microbiol Spectr; 2022 Feb; 10(1):e0242221. PubMed ID: 35138191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of RNA-binding proteomes under Arabidopsis thaliana-Pst DC3000-PAMP interaction by orthogonal organic phase separation.
    Liu J; Zhang C; Jia X; Wang W; Yin H
    Int J Biol Macromol; 2020 Oct; 160():47-54. PubMed ID: 32454107
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic phase separation opens up new opportunities to interrogate the RNA-binding proteome.
    Smith T; Villanueva E; Queiroz RML; Dawson CS; Elzek M; Urdaneta EC; Willis AE; Beckmann BM; Krijgsveld J; Lilley KS
    Curr Opin Chem Biol; 2020 Feb; 54():70-75. PubMed ID: 32131038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome-wide discovery of coding and noncoding RNA-binding proteins.
    Huang R; Han M; Meng L; Chen X
    Proc Natl Acad Sci U S A; 2018 Apr; 115(17):E3879-E3887. PubMed ID: 29636419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single and Combined Methods to Specifically or Bulk-Purify RNA-Protein Complexes.
    Van Ende R; Balzarini S; Geuten K
    Biomolecules; 2020 Aug; 10(8):. PubMed ID: 32784769
    [TBL] [Abstract][Full Text] [Related]  

  • 8. System-wide identification of RNA-binding proteins by interactome capture.
    Castello A; Horos R; Strein C; Fischer B; Eichelbaum K; Steinmetz LM; Krijgsveld J; Hentze MW
    Nat Protoc; 2013 Mar; 8(3):491-500. PubMed ID: 23411631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Purification of cross-linked RNA-protein complexes by phenol-toluol extraction.
    Urdaneta EC; Vieira-Vieira CH; Hick T; Wessels HH; Figini D; Moschall R; Medenbach J; Ohler U; Granneman S; Selbach M; Beckmann BM
    Nat Commun; 2019 Mar; 10(1):990. PubMed ID: 30824702
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ribonomics Approaches to Identify RBPome in Plants and Other Eukaryotes: Current Progress and Future Prospects.
    Haroon M; Afzal R; Zafar MM; Zhang H; Li L
    Int J Mol Sci; 2022 May; 23(11):. PubMed ID: 35682602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of RNA-binding domains of RNA-binding proteins in cultured cells on a system-wide scale with RBDmap.
    Castello A; Frese CK; Fischer B; Järvelin AI; Horos R; Alleaume AM; Foehr S; Curk T; Krijgsveld J; Hentze MW
    Nat Protoc; 2017 Dec; 12(12):2447-2464. PubMed ID: 29095441
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight into novel RNA-binding activities via large-scale analysis of lncRNA-bound proteome and IDH1-bound transcriptome.
    Liu L; Li T; Song G; He Q; Yin Y; Lu JY; Bi X; Wang K; Luo S; Chen YS; Yang Y; Sun BF; Yang YG; Wu J; Zhu H; Shen X
    Nucleic Acids Res; 2019 Mar; 47(5):2244-2262. PubMed ID: 30698743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using RNA Affinity Purification Followed by Mass Spectrometry to Identify RNA-Binding Proteins (RBPs).
    Shan M; Gregory BD
    Methods Mol Biol; 2020; 2166():241-253. PubMed ID: 32710413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Protein Interaction Profile Sequencing (PIP-seq) to Identify RNA Secondary Structure and RNA-Protein Interaction Sites of Long Noncoding RNAs in Plants.
    Kramer MC; Gregory BD
    Methods Mol Biol; 2019; 1933():343-361. PubMed ID: 30945196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comprehensive Identification of RNA-Binding Proteins by RNA Interactome Capture.
    Castello A; Horos R; Strein C; Fischer B; Eichelbaum K; Steinmetz LM; Krijgsveld J; Hentze MW
    Methods Mol Biol; 2016; 1358():131-9. PubMed ID: 26463381
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SHIFTR enables the unbiased identification of proteins bound to specific RNA regions in live cells.
    Aydin J; Gabel A; Zielinski S; Ganskih S; Schmidt N; Hartigan CR; Schenone M; Carr SA; Munschauer M
    Nucleic Acids Res; 2024 Mar; 52(5):e26. PubMed ID: 38281241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome-Wide Mapping of Protein-RNA Interactions.
    Bi X; Shen X
    Methods Mol Biol; 2020; 2161():161-173. PubMed ID: 32681512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. mRNA interactome capture in mammalian cells.
    Kastelic N; Landthaler M
    Methods; 2017 Aug; 126():38-43. PubMed ID: 28710009
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic Analysis of the Impact of R-Methylation on RBPs-RNA Interactions: A Proteomic Approach.
    Maniaci M; Boffo FL; Massignani E; Bonaldi T
    Front Mol Biosci; 2021; 8():688973. PubMed ID: 34557518
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transcriptome-wide ribonuclease-mediated protein footprinting to identify RNA-protein interaction sites.
    Silverman IM; Gregory BD
    Methods; 2015 Jan; 72():76-85. PubMed ID: 25448484
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.