BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

434 related articles for article (PubMed ID: 30607034)

  • 41. The RNA-Protein Interactome of Differentiated Kidney Tubular Epithelial Cells.
    Ignarski M; Rill C; Kaiser RWJ; Kaldirim M; Neuhaus R; Esmaillie R; Li X; Klein C; Bohl K; Petersen M; Frese CK; Höhne M; Atanassov I; Rinschen MM; Höpker K; Schermer B; Benzing T; Dieterich C; Fabretti F; Müller RU
    J Am Soc Nephrol; 2019 Apr; 30(4):564-576. PubMed ID: 30867249
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantitative Proteomics to Identify Nuclear RNA-Binding Proteins of Malat1.
    Scherer M; Levin M; Butter F; Scheibe M
    Int J Mol Sci; 2020 Feb; 21(3):. PubMed ID: 32050583
    [TBL] [Abstract][Full Text] [Related]  

  • 43. iDRiP for the systematic discovery of proteins bound directly to noncoding RNA.
    Chu HP; Minajigi A; Chen Y; Morris R; Guh CY; Hsieh YH; Boukhali M; Haas W; Lee JT
    Nat Protoc; 2021 Jul; 16(7):3672-3694. PubMed ID: 34108731
    [TBL] [Abstract][Full Text] [Related]  

  • 44. uvCLAP is a fast and non-radioactive method to identify in vivo targets of RNA-binding proteins.
    Maticzka D; Ilik IA; Aktas T; Backofen R; Akhtar A
    Nat Commun; 2018 Mar; 9(1):1142. PubMed ID: 29559621
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Epitranscriptomic technologies and analyses.
    Li X; Liang QX; Lin JR; Peng J; Yang JH; Yi C; Yu Y; Zhang QC; Zhou KR
    Sci China Life Sci; 2020 Apr; 63(4):501-515. PubMed ID: 32170629
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transcriptome-wide identification of in vivo interactions between RNAs and RNA-binding proteins by RIP and PAR-CLIP assays.
    González-Buendía E; Saldaña-Meyer R; Meier K; Recillas-Targa F
    Methods Mol Biol; 2015; 1288():413-28. PubMed ID: 25827894
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genome-wide identification of protein binding sites on RNAs in mammalian cells.
    Liu F; Ma T; Zhang Y
    Biochem Biophys Res Commun; 2019 Jan; 508(3):953-958. PubMed ID: 30545631
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Pervasive and dynamic protein binding sites of the mRNA transcriptome in Saccharomyces cerevisiae.
    Freeberg MA; Han T; Moresco JJ; Kong A; Yang YC; Lu ZJ; Yates JR; Kim JK
    Genome Biol; 2013 Feb; 14(2):R13. PubMed ID: 23409723
    [TBL] [Abstract][Full Text] [Related]  

  • 49. PAR-CliP--a method to identify transcriptome-wide the binding sites of RNA binding proteins.
    Hafner M; Landthaler M; Burger L; Khorshid M; Hausser J; Berninger P; Rothballer A; Ascano M; Jungkamp AC; Munschauer M; Ulrich A; Wardle GS; Dewell S; Zavolan M; Tuschl T
    J Vis Exp; 2010 Jul; (41):. PubMed ID: 20644507
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tandem RNA isolation reveals functional rearrangement of RNA-binding proteins on
    Iadevaia V; Wouters MD; Kanitz A; Matia-González AM; Laing EE; Gerber AP
    RNA Biol; 2020 Jan; 17(1):33-46. PubMed ID: 31522610
    [TBL] [Abstract][Full Text] [Related]  

  • 51. CLIPdb: a CLIP-seq database for protein-RNA interactions.
    Yang YC; Di C; Hu B; Zhou M; Liu Y; Song N; Li Y; Umetsu J; Lu ZJ
    BMC Genomics; 2015 Feb; 16(1):51. PubMed ID: 25652745
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Capture and Identification of RNA-binding Proteins by Using Click Chemistry-assisted RNA-interactome Capture (CARIC) Strategy.
    Huang R; Han M; Meng L; Chen X
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30394395
    [TBL] [Abstract][Full Text] [Related]  

  • 53. NORAD-induced Pumilio phase separation is required for genome stability.
    Elguindy MM; Mendell JT
    Nature; 2021 Jul; 595(7866):303-308. PubMed ID: 34108682
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts.
    Baltz AG; Munschauer M; Schwanhäusser B; Vasile A; Murakawa Y; Schueler M; Youngs N; Penfold-Brown D; Drew K; Milek M; Wyler E; Bonneau R; Selbach M; Dieterich C; Landthaler M
    Mol Cell; 2012 Jun; 46(5):674-90. PubMed ID: 22681889
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Isolation and identification of cytoskeleton-associated prolamine mRNA binding proteins from developing rice seeds.
    Crofts AJ; Crofts N; Whitelegge JP; Okita TW
    Planta; 2010 May; 231(6):1261-76. PubMed ID: 20217123
    [TBL] [Abstract][Full Text] [Related]  

  • 56. RNA Crosslinking to Analyze the Mitochondrial RNA-Binding Proteome.
    van Esveld SL; Spelbrink JN
    Methods Mol Biol; 2021; 2192():147-158. PubMed ID: 33230772
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An RNA tagging approach for system-wide RNA-binding proteome profiling and dynamics investigation upon transcription inhibition.
    Zhang Z; Liu T; Dong H; Li J; Sun H; Qian X; Qin W
    Nucleic Acids Res; 2021 Jun; 49(11):e65. PubMed ID: 33693821
    [TBL] [Abstract][Full Text] [Related]  

  • 58. RNA interactome capture in Escherichia coli globally identifies RNA-binding proteins.
    Stenum TS; Kumar AD; Sandbaumhüter FA; Kjellin J; Jerlström-Hultqvist J; Andrén PE; Koskiniemi S; Jansson ET; Holmqvist E
    Nucleic Acids Res; 2023 May; 51(9):4572-4587. PubMed ID: 36987847
    [TBL] [Abstract][Full Text] [Related]  

  • 59. RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent Pre-mRNAs and chromatin sites.
    Engreitz JM; Sirokman K; McDonel P; Shishkin AA; Surka C; Russell P; Grossman SR; Chow AY; Guttman M; Lander ES
    Cell; 2014 Sep; 159(1):188-199. PubMed ID: 25259926
    [TBL] [Abstract][Full Text] [Related]  

  • 60. High-Resolution, High-Throughput Analysis of Hfq-Binding Sites Using UV Crosslinking and Analysis of cDNA (CRAC).
    Sy B; Wong J; Granneman S; Tollervey D; Gally D; Tree JJ
    Methods Mol Biol; 2018; 1737():251-272. PubMed ID: 29484598
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.