BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 30607174)

  • 1. Lipid metabolism of phenol-tolerant
    Henson WR; Hsu FF; Dantas G; Moon TS; Foston M
    Biotechnol Biofuels; 2018; 11():339. PubMed ID: 30607174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630.
    Yoneda A; Henson WR; Goldner NK; Park KJ; Forsberg KJ; Kim SJ; Pesesky MW; Foston M; Dantas G; Moon TS
    Nucleic Acids Res; 2016 Mar; 44(5):2240-54. PubMed ID: 26837573
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A key
    Xue L; Zhao Y; Li L; Rao X; Chen X; Ma F; Yu H; Xie S
    Appl Environ Microbiol; 2023 Oct; 89(10):e0052223. PubMed ID: 37800939
    [No Abstract]   [Full Text] [Related]  

  • 4. A concerted systems biology analysis of phenol metabolism in Rhodococcus opacus PD630.
    Roell GW; Carr RR; Campbell T; Shang Z; Henson WR; Czajka JJ; Martín HG; Zhang F; Foston M; Dantas G; Moon TS; Tang YJ
    Metab Eng; 2019 Sep; 55():120-130. PubMed ID: 31271774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors.
    Kurosawa K; Laser J; Sinskey AJ
    Biotechnol Biofuels; 2015; 8():76. PubMed ID: 26052344
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering L-arabinose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production.
    Kurosawa K; Plassmeier J; Kalinowski J; Rückert C; Sinskey AJ
    Metab Eng; 2015 Jul; 30():89-95. PubMed ID: 25936337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased triacylglycerol production in Rhodococcus opacus by overexpressing transcriptional regulators.
    Anthony WE; Geng W; Diao J; Carr RR; Wang B; Ning J; Moon TS; Dantas G; Zhang F
    Biotechnol Biofuels Bioprod; 2024 Jun; 17(1):83. PubMed ID: 38898475
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodococcus opacus B4: a promising bacterium for production of biofuels and biobased chemicals.
    Castro AR; Rocha I; Alves MM; Pereira MA
    AMB Express; 2016 Dec; 6(1):35. PubMed ID: 27179529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of potential pathways for biological conversion of poplar wood into lipids by co-fermentation of
    Li X; He Y; Zhang L; Xu Z; Ben H; Gaffrey MJ; Yang Y; Yang S; Yuan JS; Qian WJ; Yang B
    Biotechnol Biofuels; 2019; 12():60. PubMed ID: 30923568
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptive response of Rhodococcus opacus PWD4 to salt and phenolic stress on the level of mycolic acids.
    de Carvalho CCCR; Fischer MA; Kirsten S; Würz B; Wick LY; Heipieper HJ
    AMB Express; 2016 Dec; 6(1):66. PubMed ID: 27620730
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of Chemical and Metabolite Sensors for Rhodococcus opacus PD630.
    DeLorenzo DM; Henson WR; Moon TS
    ACS Synth Biol; 2017 Oct; 6(10):1973-1978. PubMed ID: 28745867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved site-specific mutagenesis in Rhodococcus opacus using a novel conditional suicide plasmid.
    Jain G; Ertesvåg H
    Appl Microbiol Biotechnol; 2022 Nov; 106(21):7129-7138. PubMed ID: 36194264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering xylose metabolism in triacylglycerol-producing Rhodococcus opacus for lignocellulosic fuel production.
    Kurosawa K; Wewetzer SJ; Sinskey AJ
    Biotechnol Biofuels; 2013 Sep; 6(1):134. PubMed ID: 24041310
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-omic elucidation of aromatic catabolism in adaptively evolved Rhodococcus opacus.
    Henson WR; Campbell T; DeLorenzo DM; Gao Y; Berla B; Kim SJ; Foston M; Moon TS; Dantas G
    Metab Eng; 2018 Sep; 49():69-83. PubMed ID: 30059786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Rhodococcus opacus PD630 heparin-binding hemagglutinin homolog TadA mediates lipid body formation.
    MacEachran DP; Prophete ME; Sinskey AJ
    Appl Environ Microbiol; 2010 Nov; 76(21):7217-25. PubMed ID: 20851968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioconversion of renewable feedstocks by Rhodococcus opacus.
    Chatterjee A; DeLorenzo DM; Carr R; Moon TS
    Curr Opin Biotechnol; 2020 Aug; 64():10-16. PubMed ID: 31580993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioconversion of lignin model compounds with oleaginous Rhodococci.
    Kosa M; Ragauskas AJ
    Appl Microbiol Biotechnol; 2012 Jan; 93(2):891-900. PubMed ID: 22159607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combinatorial pretreatment and fermentation optimization enabled a record yield on lignin bioconversion.
    Liu ZH; Xie S; Lin F; Jin M; Yuan JS
    Biotechnol Biofuels; 2018; 11():21. PubMed ID: 29422949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pyrolysis oil-based lipid production as biodiesel feedstock by Rhodococcus opacus.
    Wei Z; Zeng G; Kosa M; Huang D; Ragauskas AJ
    Appl Biochem Biotechnol; 2015 Jan; 175(2):1234-46. PubMed ID: 25377250
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved glycerol utilization by a triacylglycerol-producing Rhodococcus opacus strain for renewable fuels.
    Kurosawa K; Radek A; Plassmeier JK; Sinskey AJ
    Biotechnol Biofuels; 2015; 8():31. PubMed ID: 25763105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.