These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 30607263)

  • 1. R Package imputeTestbench to Compare Imputation Methods for Univariate Time Series.
    Beck MW; Bokde N; Asencio-Cortés G; Kulat K
    R J; 2018; 10(1):218-233. PubMed ID: 30607263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection of statistical technique for imputation of single site-univariate and multisite-multivariate methods for particulate pollutants time series data with long gaps and high missing percentage.
    K P; Shakya KS; Kumar P
    Environ Sci Pollut Res Int; 2023 Jun; 30(30):75469-75488. PubMed ID: 37219777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binned Data Provide Better Imputation of Missing Time Series Data from Wearables.
    Chakrabarti S; Biswas N; Karnani K; Padul V; Jones LD; Kesari S; Ashili S
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of imputation methods on the amount of genetic variation captured by a single-nucleotide polymorphism panel in soybeans.
    Xavier A; Muir WM; Rainey KM
    BMC Bioinformatics; 2016 Feb; 17():55. PubMed ID: 26830693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Missing Data Infilling Mechanisms for Recovering a Real-World Single Station Streamflow Observation.
    Baddoo TD; Li Z; Odai SN; Boni KRC; Nooni IK; Andam-Akorful SA
    Int J Environ Res Public Health; 2021 Aug; 18(16):. PubMed ID: 34444127
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient use of binned data for imputing univariate time series data.
    Darji J; Biswas N; Padul V; Gill J; Kesari S; Ashili S
    Front Big Data; 2024; 7():1422650. PubMed ID: 39234189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Missing value imputation in high-dimensional phenomic data: imputable or not, and how?
    Liao SG; Lin Y; Kang DD; Chandra D; Bon J; Kaminski N; Sciurba FC; Tseng GC
    BMC Bioinformatics; 2014 Nov; 15(1):346. PubMed ID: 25371041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collateral missing value imputation: a new robust missing value estimation algorithm for microarray data.
    Sehgal MS; Gondal I; Dooley LS
    Bioinformatics; 2005 May; 21(10):2417-23. PubMed ID: 15731210
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictors of clinical outcome in pediatric oligodendroglioma: meta-analysis of individual patient data and multiple imputation.
    Wang KY; Vankov ER; Lin DDM
    J Neurosurg Pediatr; 2018 Feb; 21(2):153-163. PubMed ID: 29192869
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Data Driven Estimation of Imputation Error-A Strategy for Imputation with a Reject Option.
    Bak N; Hansen LK
    PLoS One; 2016; 11(10):e0164464. PubMed ID: 27723782
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA microarray data imputation and significance analysis of differential expression.
    Jörnsten R; Wang HY; Welsh WJ; Ouyang M
    Bioinformatics; 2005 Nov; 21(22):4155-61. PubMed ID: 16118262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple imputation with multivariate imputation by chained equation (MICE) package.
    Zhang Z
    Ann Transl Med; 2016 Jan; 4(2):30. PubMed ID: 26889483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The multiple imputation method: a case study involving secondary data analysis.
    Walani SR; Cleland CM
    Nurse Res; 2015 May; 22(5):13-9. PubMed ID: 25976532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Integrative analysis of transcriptomic and proteomic data of Shewanella oneidensis: missing value imputation using temporal datasets.
    Torres-García W; Brown SD; Johnson RH; Zhang W; Runger GC; Meldrum DR
    Mol Biosyst; 2011 Apr; 7(4):1093-104. PubMed ID: 21212895
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of different methods to handle missing data in the context of propensity score analysis.
    Choi J; Dekkers OM; le Cessie S
    Eur J Epidemiol; 2019 Jan; 34(1):23-36. PubMed ID: 30341708
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Durga: an R package for effect size estimation and visualization.
    Khan MK; McLean DJ
    J Evol Biol; 2024 Aug; 37(8):986-993. PubMed ID: 38843076
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tools for statistical analysis with missing data: application to a large medical database.
    Preda C; Duhamel A; Picavet M; Kechadi T
    Stud Health Technol Inform; 2005; 116():181-6. PubMed ID: 16160256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Missing data imputation on the 5-year survival prediction of breast cancer patients with unknown discrete values.
    García-Laencina PJ; Abreu PH; Abreu MH; Afonoso N
    Comput Biol Med; 2015 Apr; 59():125-133. PubMed ID: 25725446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The influence of missing value imputation on detection of differentially expressed genes from microarray data.
    Scheel I; Aldrin M; Glad IK; Sørum R; Lyng H; Frigessi A
    Bioinformatics; 2005 Dec; 21(23):4272-9. PubMed ID: 16216830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ameliorative missing value imputation for robust biological knowledge inference.
    Sehgal MS; Gondal I; Dooley LS; Coppel R
    J Biomed Inform; 2008 Aug; 41(4):499-514. PubMed ID: 18334307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.