BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30607414)

  • 1. An allosteric switch-based hairpin for label-free chemiluminescence detection of ribonuclease H activity and inhibitors.
    Zhou Y; Zhang J; Jiang Q; Lu J
    Analyst; 2019 Feb; 144(4):1420-1425. PubMed ID: 30607414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A chemiluminescence resonance energy transfer strategy and its application for detection of platinum ions and cisplatin.
    Cai S; Zhou Y; Ye J; Chen R; Sun L; Lu J; Jung C; Zeng S
    Mikrochim Acta; 2019 Jun; 186(7):463. PubMed ID: 31230126
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Label-free technology for the amplified detection of microRNA based on the allosteric hairpin DNA switch and hybridization chain reaction.
    Cai S; Cao Z; Lau C; Lu J
    Analyst; 2014 Nov; 139(22):6022-7. PubMed ID: 25270599
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free chemiluminescent ATP aptasensor based on graphene oxide and an instantaneous derivatization of guanine bases.
    Song Y; Yang X; Li Z; Zhao Y; Fan A
    Biosens Bioelectron; 2014 Jan; 51():232-7. PubMed ID: 23968729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real time monitoring of junction ribonuclease activity of RNase H using chimeric molecular beacons.
    Liu B; Xiang D; Long Y; Tong C
    Analyst; 2013 Jun; 138(11):3238-45. PubMed ID: 23608820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Target-Activated DNA Polymerase Activity for Sensitive RNase H Activity Assay.
    Jung Y; Lee CY; Park KS; Park HG
    Biotechnol J; 2019 Jul; 14(7):e1800645. PubMed ID: 30791223
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemiluminescent detection of platelet derived growth factor-BB based on sandwich label-free aptasensor and biotin-streptavidin strategy.
    Xiluan Y; Kun Z; Yunting Y; Yipi X; Chengyi Z; Xi M; Jie L
    J Immunol Methods; 2022 Jul; 506():113289. PubMed ID: 35644254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorometric aptamer-based determination of ochratoxin A based on the use of graphene oxide and RNase H-aided amplification.
    Ma C; Wu K; Zhao H; Liu H; Wang K; Xia K
    Mikrochim Acta; 2018 Jun; 185(7):347. PubMed ID: 29961128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative determination of VEGF165 in cell culture medium by aptamer sandwich based chemiluminescence assay.
    Shan S; He Z; Mao S; Jie M; Yi L; Lin JM
    Talanta; 2017 Aug; 171():197-203. PubMed ID: 28551129
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence Assay for Ribonuclease H Based on Nonlabeled Substrate and DNAzyme Assisted Cascade Amplification.
    Wang L; Zhou H; Liu B; Zhao C; Fan J; Wang W; Tong C
    Anal Chem; 2017 Oct; 89(20):11014-11020. PubMed ID: 28911227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Label-free aptamer-based chemiluminescence detection of adenosine.
    Yan X; Cao Z; Kai M; Lu J
    Talanta; 2009 Jul; 79(2):383-7. PubMed ID: 19559894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Selective inhibitory DNA aptamers of the human RNase H1.
    Pileur F; Andreola ML; Dausse E; Michel J; Moreau S; Yamada H; Gaidamakov SA; Crouch RJ; Toulmé JJ; Cazenave C
    Nucleic Acids Res; 2003 Oct; 31(19):5776-88. PubMed ID: 14500841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid aptasensor capable of simply diagnosing prostate cancer.
    Cha T; Cho S; Kim YT; Lee JH
    Biosens Bioelectron; 2014 Dec; 62():31-7. PubMed ID: 24973540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. General colorimetric detection of proteins and small molecules based on cyclic enzymatic signal amplification and hairpin aptamer probe.
    Li J; Fu HE; Wu LJ; Zheng AX; Chen GN; Yang HH
    Anal Chem; 2012 Jun; 84(12):5309-15. PubMed ID: 22642720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA-Walker-Induced Allosteric Switch for Tandem Signal Amplification with Palladium Nanoparticles/Metal-Organic Framework Tags in Electrochemical Biosensing.
    Yan T; Zhu L; Ju H; Lei J
    Anal Chem; 2018 Dec; 90(24):14493-14499. PubMed ID: 30472833
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitive aptamer-based fluorescene assay for ochratoxin A based on RNase H signal amplification.
    Wu K; Ma C; Zhao H; Chen M; Deng Z
    Food Chem; 2019 Mar; 277():273-278. PubMed ID: 30502145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hairpin assembly circuit-based fluorescence cooperative amplification strategy for enzyme-free and label-free detection of small molecule.
    Feng C; Zhu J; Sun J; Jiang W; Wang L
    Talanta; 2015 Oct; 143():101-106. PubMed ID: 26078135
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemiluminescent aptasensor capable of rapidly quantifying Escherichia Coli O157:H7.
    Khang J; Kim D; Chung KW; Lee JH
    Talanta; 2016 Jan; 147():177-83. PubMed ID: 26592593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel fluorescence amplification strategy combining cascade primer exchange reaction with CRISPR/Cas12a system for ultrasensitive detection of RNase H activity.
    Xie Z; Chen S; Zhang W; Zhao S; Zhao Z; Wang X; Huang Y; Yi G
    Biosens Bioelectron; 2022 Jun; 206():114135. PubMed ID: 35278851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sensitive chemiluminescence aptasensor based on exonuclease-assisted recycling amplification.
    Cai S; Sun Y; Lau C; Lu J
    Anal Chim Acta; 2013 Jan; 761():137-42. PubMed ID: 23312324
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.